Institute of Metals Division - Recrystallization of a Silicon-Iron Crystal as Observed by Transmission Electron Microscopy

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 1412 KB
- Publication Date:
- Jan 1, 1962
Abstract
The early stages of recrystallization in a 70 pct cold-rolled Si-Fe crystal of the (110) (0011) orientation were studied with a Siemens electron microscope. Orientation studies based on electron-diffractzotz. patterns confirm the results of previous texture analysis. The driving energy for recrystallizatior and the critical radius for growth were calculated from the dislocation energy and the energy of the subgrain bourzdaries, and it was found consistent with the observed size of the recrystallized grains. The recrystallization characteristics of crystals with different initial orientations are discussed. The recrystallization of cold-rolled (110)[001] crystals of Si-Fe has been widely studied by various investigators.1-4 Their results on both deformation and annealing textures are in good agreement. The rolling texture after 70 pct reduction consists mainly of two crystallographically equivalent (111) [112] type textures and a minor component of the (100) [011] type. The latter is derived from the deformation twins, or Neumann bands, which are formed during the early stages of deformation and later rotate to the (100) [011] orientation upon further rolling reduction. Between the two main (111) [112] type textures, there is some orientation spread, because of which very low intensity areas appear in the pole figure. If these very low intensity areas are considered to be a very weak component in the texture, then a (110) [ 001 ] orientation may be assigned to them. When this rolled crystal is annealed at a sufficiently high temperature for recrystallization, the texture returns to a simple (110) [001]. The purpose of the present investigation was primarily to seek a better understanding of the recrystallization process by using the electron transmission technique. The (110) [0011 type of crystal was selected because orientation data for it are well known from previous studies with conventional techniques. Direct observations on the recrystallization of such a crystal have also been made by using a hot-stage inside the electron microscope, and the results will be reported in another paper. MATERIAL AND METHOD A single-crystal strip of the (110) [001] orientation was prepared from a commercial grade 3 pct Si-Fe alloy by the strain-anneal technique.= The strip was approximately 0.014 in. thick, and was rolled 70 pct at room temperature to a thickness of 0.004 in. Specimens were cut from the rolled strip and were annealed in a purified hydrogen or argon atmosphere. They were then electrolytically polished in a chromic-acetic acid solution to very thin foils. Best results were found by polishing first between two narrowly spaced flat cathodes with the specimen edges coated with acid-resisting paint, followed by polishing between two pointed electrodes until a hole appeared in the center as described by Bollmann.6 It was found that a thin transparent film always formed along the thin edges of the polished specimen. This film was then removed by rinsing the specimen very briefly in a solution of alcohol with a few drops of HF or HCl. RESULTS AND DISCUSSION 1) The Deformed Crystal. From the electron-diffraction patterns taken at various areas of an as-rolled specimen, the texture components as deduced - from ordinary pole-figure analysis were confirmed. Over most of the areas where orientation was examined, a (111) pattern with a [112] direction parallel to the rolling direction was obtained. This corresponds to the main deformation texture of the (111) [112] type. In a few areas the diffraction pattern was (100) [Oil], corresponding to the minor-texture component derived from the Neumann bands. The (110) [001] orientation, which corresponds to the very weak intensity area in the pole figure, was found infrequently. A typical example of the deformed matrix having the (111) type main texture is shown in Fig. 1, where (a) is the microstructure and (b) is the diffraction pattern taken from that area. It was also frequently observed that in other areas more or less continuous rings of weaker intensity were superimposed on the simple (111) diffraction pattern, suggesting the presence of a wide range of additional orientations. Other evidence indicated that the recrystallization characteristics are different in these two different types of areas. The hot-stage observations which provide this evidence will be discussed in another paper. AS shown in Fig. l(a), numerous dislocation-free areas of very small size are embedded in the "clouds" of high-dislocation density. This indicates that the deformation of a single crystal, even after a rolling reduction of 70 pct, is far from uniform on a micro-
Citation
APA:
(1962) Institute of Metals Division - Recrystallization of a Silicon-Iron Crystal as Observed by Transmission Electron MicroscopyMLA: Institute of Metals Division - Recrystallization of a Silicon-Iron Crystal as Observed by Transmission Electron Microscopy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.