Institute of Metals Division - Recrystallization of Cold-Drawn Sintered Aluminum Powder

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 424 KB
- Publication Date:
- Jan 1, 1961
Abstract
The recrystallization behaviors of two extruded and cold-drawn experimental sintered aluminum powder alloys, containing 1.75 and 3.0 pct Al2O3 by weight, were compared with that of extruded and cold-drawn commercially pure alumirzum. The kinetics of recrystallization of the alloys are described semiquantitatively. For the alloy containing 1.75 pct A l203 the rates of nucleation and of growth were also semiquantitatively determined. THE most striking property of aluminum alloys strengthened by a dispersion of Al2O3, the so-called SAP alloys, is their stability at elevated temperatures. One of the manifestations of this stability is their resistance to recrystallization after they have been cold worked. Most of the commercial grades of either the Swiss SAP or of Alcoa's Aluminum Powder Metallurgy Products have not been recrys-tallized after cold working, even when they are heated for a long time at a temperature near the aluminum melting point. Lenel, however, observed that the dispersion strengthened aluminum alloys with a larger spacing between the oxide particles than that of most commercial grades would recrys-tallize.1 It appeared to be of interest to further investigate the mode and kinetics of recrystallization of these alloys, and to compare their recrystallization behavior with that of commercially pure aluminum. Because homogeneous deformation of these SAP alloys in tension did not provide sufficient cold work to induce recrystallization, they were cold worked by wire drawing; the nonuniformity of this deformation unavoidably complicated the interpretation of the recrystallization studies. EXPERIMENTAL DETAILS Extrusions—Two types of sintered aluminum powder extrusions were used in this study. One type, designated AT-400, was produced from Reynolds atomized aluminum powder consisting of spherical particles averaging 3µ in diam and containing 1.75 wt pct of Al2O3. This powder was very similar to the R3M powder from which extrusions were previously prepared with an average spacing of 0.9µ between oxide particles.2 The second type, designated MD 2100, was produced from Metals Disintegrating Co. flake powder containing 3.0 wt pct of Al2O3, with an average flake thickness of 0.8µ. The average spacing between oxide platelets in MD 2100 extru- sions was 0.45µ.2 Powder compacts of 3/4-in. diam were extruded at 1000°F into 0.097-in. diam (AT-400) and 0.093-in. diam (MD 2100) wires by methods previously described.3 In order to compare the recrystallization behavior of sintered aluminum powder extrusions with that of wrought commercially pure aluminum 3/4 in. rod stock of 1100 F aluminum was extruded at 1000°F into 0.102-in. diam wire. Wire Drawing—Tungsten carbide dies were used for the AT-400 and 1100 F alloys. They had an included angle of about 15 deg and reduced the wire area approximately 7 pct per pass. Steel dies with an included angle of 11 to 13 deg and an average reduction per pass of 10 pct were used for drawing the MD 2100 alloy, because drawing this alloy through the carbide dies produced overdrawing defects. Heat Treatment—The cold-drawn wires were cut into small samples, and the deformed ends were etched off. The samples were each wrapped tightly in a single layer of aluminum foil, and individually isothermally annealed in a lead bath. Metallography—The modes and kinetics of recrystallization were determined by metallography. Mounted and polished specimens were anodized in a solution of 1.8 pct HBF4;4 examination under polarized light clearly revealed their grain structures. The recrystallized grains were generally much larger than those of the unrecrystallized matrix, and could clearly be distinguished because they alternated between maximum and minimum light reflection when the microscope stage was rotated, while the unrecrystallized matrix had a comparatively homogeneous "salt and pepper" structure. The fractional recrystallized volumes of the dispersion hardened alloy wires were determined by cutting and weighing of recrystallized and total transverse areas on photomicrographs. The recrystallized grains in the 1100 F alloy were too small to be cut out individually; therefore a combination of cutting and lineal analysis was used in this case. RESULTS AND DISCUSSION Modes of Recrystallization—The modes of recrystallization of the three alloys varied widely. In the 1100 F alloy nucleation and growth started in the region midway between the center and the surface;
Citation
APA:
(1961) Institute of Metals Division - Recrystallization of Cold-Drawn Sintered Aluminum PowderMLA: Institute of Metals Division - Recrystallization of Cold-Drawn Sintered Aluminum Powder. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1961.