Institute of Metals Division - Recrystallization of Single Crystals of Aluminum

The American Institute of Mining, Metallurgical, and Petroleum Engineers
D. C. Larson Bruce Chalmers
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
524 KB
Publication Date:
Jan 1, 1964

Abstract

Aluminum crystals with longitudinal-axis orientations of (111) . (110), and (100) were deforined in tension and annealed. The conditions of deformation were controlled so that the re crystallization nuclei originated in either the heavily deformed regions at saw cuts {artificial nucleation) or in the lightly deformed matrix (spontaneous nucleation). The artificial-nucleatioln experiments showed that in lightly deformed (110) and (100) crystals low-angle twist boundaries are most mobile, while in (111> crystals and heavily deformed (110) and (100) crystals high-angle tilt boundaries with near (111) rotations are favored. The spontaneous-nucleation experiments showed the existence of preferred orientations in the (111) crystals. The nonrandomness of the grain orientations is quantitatively determined through a comparison with the results which would he obtained from a randowl set of grain ovientations. PREVIOUS recrystallization studies have been performed on single crystals deformed in tension.1 7 The crystals used in these studies usually had random tensile-axis orientations and the extent of deformation was not a primary consideration. The present study concerns the recrystallization of single crystals with tensile-axis orientations of (Ill), (110), and (100). The emphasis of this work is on the influence of the tensile-axis orientation and the degree of deformation on both the nucleation and growth processes. The multiple-slip orientations were chosen because secondary slip or slip intersection promotes nucleation.1,5,8 These crystals recrystallize at lower strains than the crystals which are oriented for single slip. Also, the greatest variation in deformation behavior is exhibited by the multiple-slip orientations. The stress-strain curves for crystals with tensile-axis orientations of (111) are higher than the stress-strain curves for poly-crystals, and the stress-strain curves for crystals with tensile-axis orientations of (100) are lower (at large strains) than the stress-strain curves for the crystals which deform initially in single slip.g The recrystallization nuclei originated in either 1) the homogeneously* deformed matrix of the crys- tals or 2) the heavily and inhomogeneously deformed regions at saw cuts. The nuclei will be referred to hereafter as spontaneous and artificial nuclei, respectively. The two terms do not imply a difference in the nature of the nuclei; they imply simply a difference in the mode of introduction of the nuclei. During spontaneous nucleation very few (always less than ten) grains nucleate, while during artificial nucleation large numbers of grains nucleate. Only a fraction of the artificially nucleated grains penetrate very far into the deformed matrix during annealing. The grains that penetrate the farthest into the deformed matrix will be referred to as the dominant grains. EXPERIMENTAL PROCEDURE The thirty-five crystals used in this investigation were grown from the melt in milled graphite boats at a rate of 1.6 cm per hr. The crystals had dimensions of approximately 6 by 12 by 80 or 6 by 6 by 80 mm and the aluminum was of 99.992 pet purity. The as-grown crystals were annealed at 610°C for 24 hr and furnace-cooled. They were then heavily etched and electropolished in a solution of five parts methanol to one part perchloric acid. The crystal orientations were obtained by back-reflection Laue photographs and were accurate to ±2 deg. The tensile-axis orientations were (loo), (110), and (111). Two of the side faces of the (111) crystals were (110) lanes. The (110) crystals had both {100) and {110) side faces and the (100) crystals had (100) side faces. The crystals were deformed at a strain rate of 0.003 per min. Shear stress and shear strain were obtained by multiplying and dividing the tensile stress and strain, respectively, by the Schmid factor, m. For the (111) crystals m = 0.272 and for the (110) and the (100) crystals m = 0.408. The Schmid factor is effectively constant during deformation for all orientations. The deformed crystals were sawed into 1-in.-long specimens while the crystals were totally enclosed in a graphite boat. The sawing was performed very carefully in order to limit the plastic deformation to the sawed regions. The specimens were electropolished in the solution mentioned above to remove the sawed-end deformation as well as controlled amounts of surface material. A special stainless-steel grip was used to hold the specimens during the electropolishing treatment. The gripping faces were flat, with no teeth, to prevent the introduction of extraneous de-
Citation

APA: D. C. Larson Bruce Chalmers  (1964)  Institute of Metals Division - Recrystallization of Single Crystals of Aluminum

MLA: D. C. Larson Bruce Chalmers Institute of Metals Division - Recrystallization of Single Crystals of Aluminum. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1964.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account