Institute of Metals Division - Role of Gases in the Production of High Density Powder Compacts

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 1052 KB
- Publication Date:
- Jan 1, 1952
Abstract
HIS investigation originated as a result of a pre-vious experimental study' of the magnetic properties of Fe-Co alloys fabricated by the powder metallurgy technique. Densities of powder compacts prepared for the magnetics investigation varied from 7.45 to 7.70 g per cu cm or from 93 to 95 pct of the experimental value of 8.08 g per cu cm for a fused alloy of the same composition.' While this range of density is considered sufficiently high for most applications, the highest possible density is to be desired for maximum magnetic properties. By applying a technique similar to the one described above to a pure electrolytic iron powder, Rostoker³ was able to achieve a density of 7.895 g per cu cm, which is the highest density ever reported for sintered iron. While Rostoker's work involved the sintering of an elemental powder rather than a mixture, it was believed that higher densities should also have been obtained for alloys using the above technique because of the recoining operation and the high sintering temperature. Consequently, it was decided to investigate the various factors affecting the density of this alloy with the idea that such a study might lead to higher densities and, as a result, powder alloys having magnetic properties identical with those of the fused alloys. It was believed that the principal reason that near-theoretical densities for the powdered alloy were not obtained was the interference of gases with the normal sintering mechanism. When present during the sintering operation, gases can exert several harmful effects: they can remain on the particle surface and interfere with surface diffusion and plastic flow; they can be released and, under certain conditions, expand the void spaces through gas pressure; or they can remain trapped in the pores and exert a hydrostatic pressure that retards elimination of the pores. Jones,4 Rhines,5 Goetzel," and others have given the effect of gases in the sintering of powder compacts an extensive treatment. Among the more important sources of gases in the sintering process are dissolved gases, adsorbed gases, air entrapped during pressing, and gaseous products of chemical reactions. During sintering adsorbed gases are partly released at a relatively low temperature, while those gases entrapped during pressing cannot escape until their pressure is increased sufficiently through increasing temperature to expand the interpartjcle openings. The remaining adsorbed gases, gaseous reduction products, and dissolved gases produce a similar effect at the higher temperatures. If, in the sintering process, gas evolution occurs after the interpore channels have been sealed, an exaggerated expansion of the void spaces results. This is particularly true if the temperature is high enough for extensive plastic flow. In his fabrication of powder bars from tantalum, Balke7 had to consider the effect of adsorbed hydrogen and provide for its escape during sintering by limiting the compacting pressure to a maximum of 50 tons per sq in. The effect of gases entrapped during pressing was first noted by Trzebiatowski8 when he found that gold and silver powders decrease in density with increasing sintering temperature if pressed at 200 tsi, while they exhibit the usual increase when pressed at 40 tsi. Recent investigators9-11 have also noted that entrapped gases have an effect on the expansion of copper compacts during sintering. Proper provision for the escape of gaseous products of reduction must be made in order to avoid deleterious effects. Myers" states that in the sintering of electrolytic tantalum powder, the temperature was gradually raised to 2600°F with a pause at 2000°F to permit reduction of the oxides. Experimental Details For the present study, 50 pct Co-50 pct Fe compacts in the form of circular disks 1½ in. in diam and 0.15 in. thick were fabricated by the pressing and sintering of a mixture of the elemental powders. It was decided to follow the sintering process by means of liquid permeability measurements, because it was thought that such measurements might serve as a measure of relative pore sizes, as well as a possible indication of the point at which most of the interpore channels become sealed. However, since the permeability as measured by the flow of a liquid, such as ethylene glycol, does not give an absolute indication of the point where the pores have become isolated, a method for determining the percentage of pores connected to the surface was set up. As an additional cross check on the permeability measurements, metallographic methods were used to study the relative pore size. Finally, the property of ultimate interest, the density, was measured. Raw Materials: The powders used consisted of an annealed, 99.9 pct pure, —150 mesh grade of electrolytic iron powder, and a 98 pct pure, —200 mesh grade of reduced and comminuted cobalt powder. The cobalt powder was not further processed either by hydrogen reduction or annealing. The screen analyses for the iron and cobalt powders are given in Table I, while the chemical analyses for each type of powder are listed in Table 11. Table 111 gives the hydrogen loss measurements for the powders according to the M.P.A. Standard Method and for a higher temperature as well. Preparation of Compacts: Equal amounts of the elemental powders were mixed by rotation for 1 hr and then pressed into compacts approximately 0.15
Citation
APA:
(1952) Institute of Metals Division - Role of Gases in the Production of High Density Powder CompactsMLA: Institute of Metals Division - Role of Gases in the Production of High Density Powder Compacts. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.