Institute of Metals Division - Secondary Recrystallization to the (100) [001] or (110) [001] Texture in 3 ¼ Pct Silicon-Iron Rolled from Sintered Compacts (TN)

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Jean Howard
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
2
File Size:
164 KB
Publication Date:
Jan 1, 1964

Abstract

ThE formation of the (100) [001) texture in 3-1/4 pct Si-Fe strip was first reported by Assmus ef a1.l in 1957. Since then much experimental work has been carried out with a view to establishing the mechanism involved. The papers cited above state that the (100) [001] texture was developed in strip rolled from material melted and cast in vacuum. (The impurity content of the ingot is reported as 0.005 pct.) The present note records that similar results can be obtained in material processed by powder metallurgy. A processing schedule is described.which enables the texture to be formed in strip up to 0.010 in. thick, but there seems no reason why this should not be achieved in thicker strip, provided that large grains are developed after sintering. The materials were prepared from Carbonyl Iron Powder Grade MCP (particle size 5 to 30 p) of the International Nickel Co. (Mond) Ltd. The powder contains about 0.15 pct 0, 0.01 pct C, 0.004 pct N, <0.002 pct S, $0.005 pct Mg and Si, and 0.4 pct Ni— that is, it is substantially free from metallic impurities other than nickel, which is thought to be unimportant in the present work. The silicon powder was 99.9 pct purity, or material of transistor quality (ground in pestle and mortar). The mixed powders (3-1/4 pct Si to 96-3/4 pct Fe) are heated in hydrogen at 350" and 650°C to deoxidize the iron before sintering loose at temperatures between 1350" and 1460°C (depending upon the ultimate thickness of strip required) for up to 24 hr. The object of the high-temperature sinter is to develop a large grain size at this stage. Alternatively, the loose sintering can be done at a lower temperature followed by rolling or pressing and then annealing at temperatures between 1350" and 1460°C. Both methods produce large grains, which remain large throughout the process. The compact is then hot-rolled to approximately 1/8 in. with high-temperature interstage anneals if necessary. This step is taken to avoid intercrystalline cracking which would occur if the material of such large grain size were cold-worked. The bar is then annealed at 1050°C and reduced to its final thickness by approximately 50-pct reductions and 1050°C interstage anneals. Throughout the process the dew point of the hydrogen furnace atmosphere is maintained at about -40°C. Samples were annealed in hydrogen at various temperatures and times. Secondary recrystalliza-tion to (100) [001] was developed on the thinner material (i.e., up to 0.002 in.) by annealing in hydrogen at 1050" to 1200°C with a dew point of - 40°C or in vacuum (10-5 Torr) at 1050°C. With the thicker materials (i.e., up to 0.010 in.) the best results were obtained by annealing in hydrogen at 1200°C with a dew point of - 55°C. Complete secondary recrystal-lization to (100) [001] textures was obtained. Above these temperatures secondary recrystallization to (110) [001] tended to develop. The final annealing of samples was normally carried out with the samples placed between recrystal-lized alumina plates, but some experiments were performed with the samples suspended so that their surfaces were not in contact with anything except hydrogen, and these were equally successful in developing secondary crystals. An approximate determination of the proportion of material (before secondary recrystallization took place) having crystals with the (100) or (110) planes in or near the rolling plane showed that 11 pct of the sample had (100) and 16 pct (110). The method used for the determination is described below. A sample was annealed at a temperature just below the secondary recrystallization temperature and etched to reveal the (100) planes. The approximate area covered by crystals having (100) or (110) in or very near the surface was measured on the screen of a Vickers projection microscope. This was repeated for twenty positions chosen at random and a mean of the results calculated. The main hindrance to developing the secondary crystals in the thicker materials was the difficulty of obtaining a large enough initial primary grain size before secondary recrystallization. This was overcome by increasing the particle size of the silicon powder used. During the course of the work, it had been observed that the larger the grain size after sintering the more likely it was that the material would be successful in developing secondary crystals at a later stage. An experiment was therefore carried out to determine whether the material with the larger grain was more successful in developing secondary crystals due to the large grain produced at the sintering state per se or whether it was due to the greater reduction of silica brought about when the sintering temperature was raised in order to increase the grain size. A comparison was made between two compacts, one of which was made with silicon powder of 60 to 100 mesh, the other with silicon powder which was finer than 200 mesh. F?r this experiment, use was made of a phenomenon previously observed that the larger the particle size of the silicon powder employed in making a compact, the larger is the grain size of the compact. The silicon powder was ground
Citation

APA: Jean Howard  (1964)  Institute of Metals Division - Secondary Recrystallization to the (100) [001] or (110) [001] Texture in 3 ¼ Pct Silicon-Iron Rolled from Sintered Compacts (TN)

MLA: Jean Howard Institute of Metals Division - Secondary Recrystallization to the (100) [001] or (110) [001] Texture in 3 ¼ Pct Silicon-Iron Rolled from Sintered Compacts (TN). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1964.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account