Institute of Metals Division - Solid Solubility of Oxygen in Columbium

The American Institute of Mining, Metallurgical, and Petroleum Engineers
A. U. Seybolt
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
260 KB
Publication Date:
Jan 1, 1955

Abstract

The solubility limit of oxygen in columbium has been determined in the range between 775' and 1100°C by means of lattice parameter measurements and microscopic examination. The solubility is a function of temperature and varies, in the range given above, from 0.25 to 1.0 pct O, respectively. BECAUSE of the marked deleterious effect of oxygen upon the mechanical properties of some of the transition metals, it is desirable to know something about the solubility of oxygen in these metals. The brittleness caused by oxygen in solution is particularly marked in the case of the group VA elements, vanadium, columbium, and tantalum. The solubility of oxygen in vanadium has already been reported in an earlier paper,' and Wasilewski2 has given a value (0.9 wt pct) for the solid solubility of oxygen in tantalum at 1050°C. Brauer3 in 1941 investigated the Cb-0 system up to Cb2O5, but made no real effort to investigate the extent of oxygen solubility in the metal. He made the observation, however, that this solubility must be less than 4.76 atom pct (0.86 wt pct) oxygen. This estimate was made from X-ray diffraction results on the alloys CbO, CbO, and CbO; all alloys consisted of the terminal (Cb) solid solution plus CbO, but the last alloy containing 4.76 atom pct 0 showed only three very weak CbO lines. It is surprising that Brauer, by examining only three alloys, arrived at an estimate of the solubility which agrees very well with the results to be reported herein. Experimental Procedure A columbium strip obtained from Fansteel Metallurgical Products was cut into strips, 0.020x1/2x2 in. Two holes, about 3/16 in. in diameter, were made near the ends of the strips in order to hold them against a flat steel block for mounting in a General Electric X-ray spectrometer for lattice parameter measurements. The same holes were used to hang the specimens inside a fused silica vacuum furnace tube which was part of a Sieverts' gas absorption apparatus. The apparatus and method of adding oxygen gas has been previously described.1 According to the supplier, the columbium obtained had the analysis given in Table I. After degreasing the samples, approximately 0.001 in. was etched from each side of the samples in order to remove possible surface impurities from the last rolling operation. For this purpose the following cold acid pickle was found satisfactory: 8 parts HNO3, 2 parts H2O2 and 1 part HF. Various Cb-O compositions were obtained up to 0.75 wt pct O by the gas absorption and diffusion technique. After the sample had absorbed all the oxygen gas added at 1000°C, an additional 24 hr was allowed for homogenization. This treatment appeared to be adequate, as shown by the linearity of the lattice parameter-composition plot. More concentrated alloys were prepared by arc melting mixtures of Cb and Cb2O5 since it was very time-consuming to make Cb-0 alloys in the neighborhood of 1 pct O, or over, by the diffusion method. When the flat strip specimens were used, they were ready for the X-ray spectrometer after cooling from the Sieverts' apparatus. The cooling rate obtained by merely allowing the hot fused silica furnace tube to radiate to the atmosphere (when the furnace was lowered) was sufficiently fast to keep the dissolved oxygen in solution. Arc-melted alloys were reduced to —200 mesh powder in a diamond mortar, wrapped in tantalum foil, sealed off in evacuated fused silica tubes, and then heat treated as indicated in Table 11. The fused silica tubes were quickly immersed in cold water without breaking the tubes after the heat treatments. The tantalum foil prevented reaction between the fused silica and the sample; there was no reaction between the powdered samples and the foil at 1000°C, but some trouble was experienced at 1100°C. At this temperature level a reaction between the sample and the foil was sometimes observed, which resulted in erroneous parameter values. Experimental Results Hardness Tests: Since most of the X-ray samples were in the form of flat strip, it was convenient to obtain Vickers hardness numbers as a function of oxygen content. Compared to the V-O case,' oxygen hardens columbium much more slowly, presumably because of the larger octahedral volume in colum-bium (about 12.0 compared to 9.3Å3 in vanadium), hence, requiring less lattice strain for solution. The plot of VHN vs wt pct O is shown in Fig. 1.
Citation

APA: A. U. Seybolt  (1955)  Institute of Metals Division - Solid Solubility of Oxygen in Columbium

MLA: A. U. Seybolt Institute of Metals Division - Solid Solubility of Oxygen in Columbium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account