Institute of Metals Division - Solubility of Titanium in Liquid Magnesium

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 246 KB
- Publication Date:
- Jan 1, 1950
Abstract
There has been considerable interest in the possible use of titanium in magnesium alloys.' Zirconium has shown some promise in this connection2 and its general similarity with titanium suggests that the latter might act in a similar manner. A literature survey revealed that quantitative data on the Mg-Ti system was unavailable. Several patents3 have claimed that titanium additions from 0.2 to 4 pct to magnesium alloys were possible, but no mention was made as to the form in which the titanium existed in the alloy. Kro114 succeeded in introducing only traces of titanium into magnesium by bubbling TiCl4 through the metal under argon or by reacting it with sodium titanium fluoride. The application of theoretical data given by Carapella5 based on Hume-Rothery's principles, involving atomic size factor, crystal structure, valency and the electro-chemical factor, suggests that a Mg-Ti alloy is a favorable case, and the system appeared to warrant experimental examination. Experimental Procedure and Results THERMAL ANALYSIS If titanium is appreciably soluble in magnesium, a change in the melting point of the magnesium might be detectable using standard cooling curve methods. Magnesium was melted in graphite crucibles under an argon atmosphere, the assembly being enclosed in a silica tube. Graphite thermocouple protection tubes served also to stir the melts. The apparatus was very similar to Fig 1, with the addition of a refractory and baffle system to prevent undue heat losses from the top of the crucible. Chromel-alumel thermocouples were calibrated using Al of 99.97 pct purity. Dominion Magnesium Limited sup- plied redistilled high purity magnesium of the analysis given above. Titanium was added in three different forms: 1. Titanium powder —100 mesh, from the Titanium Alloy Manufacturing Co., Niagara Falls, N. Y. 2. Sheet titanium from the U.S. Bureau of Mines, produced by Mg reduction of TiCl4. 3. Magnesium —50 pct titanium master alloy from Metal Hydrides Inc., Beverly, Mass. The melting point of the high purity magnesium used was measured experimentally as 651.0°C. More than a dozen tests were conducted using titanium from the three sources referred to above, in calculated additions up to 20 pct titanium, at temperatures between the melting point and 1000°C and holding periods up to 6 hr. In no case was evidence obtained of solubility of titanium in magnesium, using inverse-rate and time-temperature curves. The melting point of the magnesium was unchanged within the accuracy of measurement, namely -+0.5°C; and no other thermal arrests were detected. Metallographic investigation of the thermal analysis billets indicated that the titanium additions were apparently mechanically entrapped in the magnesium in segregated areas. Consequently, these samples were not analyzed for titanium. The master alloy proved to be a mechanical mixture of titanium particles in a magne- sium matrix. These results indicated that the titanium solubility, if such existed, could not be obtained by the usual thermal methods. X RAY DIFFRACTION INVESTIGATION In an effort to detect solubility of titanium in magnesium, samples were investigated using both the Debye-Scherrer and the Focusing Back-Reflection methods. Filings from samples of the thermal analysis billets and from pure magnesium were annealed in argon one hour at 350°C to relieve mechanical strain. Measurements made of the interplanar spacings showed no difference between the Mg-Ti samples and pure magnesium. The interplanar spacings could be measured to within 0.0002A, and the greatest variation found was 0.0004A, in the back-reflection method. The diffraction lines for magnesium were not shifted by the titanium additions indicating that the solid solubility of titanium in magnesium is of a very low order—less than 0.5 pct. From both diffraction methods, a d or interplanar spacing of 0.817A was obtained for the redistilled high purity magnesium. This latter value is not given in the standard X ray diffraction cards for magnesium metal or vacuum distilled magnesium. Theoretical calculations for a close-packed hexagonal space lattice for magnesium indicate that the planes {2134) should give a line which was found. The relative intensity for this reflection at 0.817A is slightly less than that at 0.870k for magnesium. SOLUBILITY OF TITANIUM IN LIQUID MAGNESIUM The Mg-Mn system was examined by Grogan and Haughton6 who were
Citation
APA:
(1950) Institute of Metals Division - Solubility of Titanium in Liquid MagnesiumMLA: Institute of Metals Division - Solubility of Titanium in Liquid Magnesium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.