Institute of Metals Division - Some Remarks on Grain Boundary Migration (TN)

The American Institute of Mining, Metallurgical, and Petroleum Engineers
G. F. Bolling
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
1
File Size:
88 KB
Publication Date:
Jan 1, 1962

Abstract

STUDIES of grain boundary migration in zone-refined metals have all shown that the rate of migration is greatly reduced by small added solute concentrations. However, it is apparent that a difference exists between boundary migration during normal grain growth and single boundaries migrating in a bicrystal to consume a substructure. To effect the same reduction in velocity in the two cases, much more solute is required for grain growth than for the single boundary experiments. One case is available for direct comparison; both Bolling and winegardl and Aust and utter' added silver and gold to zone-refined lead to study grain growth and single boundary migration, respectively. For comparable reductions in migration rates, about 500 times more solute was required to retard grain growth than to retard the single boundaries. A reason for this difference is suggested here. The rate of grain boundary migration is dependent on solute concentration and must therefore also depend on the solute distribution; i.e., regions of higher solute concentration encountered by a moving boundary must produce greater retardation and thus could determine any observed rate. A dislocation substructure can be the source of a nonuniform solute distribution since it can attract an excess concentration of certain solutes. In fact, it is probable that the solutes which impede grain boundary migration most would segregate most severely to a substructure for the same reasons. Thus a dislocation substructure present in a crystal being consumed could locally magnify the concentration of solute confronting an advancing grain boundary. In the single boundary experiments a low-angle substructure, within single crystals obtained by growth from the melt, was used to provide the driving force to move a grain boundary; in grain growth, no substructure of this magnitude was present. The increased solute concentration at subboundaries should be given approximately by C, = G e c,/kT, where t, is a binding energy and CO the bulk concentration. To account for the difference between the two experiments in the Pb-Ag and Pb-Au cases, C, must be the concentration impeding the single boundary migration, and a value of t, = 0.25 ev is necessary. This is reasonable, even though calculation on a purely elastic basis gives t, = 0.12 ev. because electronic effects must enter for silver and gold in lead. The compound AuPbz forms3 and the metastable compound AgrPb has been reported to nucleate at dislocations prior to the formation of the stable, silver-rich phase.4 Other observations support the hypothesis that a magnified solute concentration impedes the single boundary migration. For example, some crystals were grown by Aust and Rutter at concentrations of ~ 0.1 wt pct Sn and 2 x X at. pct Ag or Au which exhibited a cellular substructure, and in these crystals no boundary migration was observed. It is therefore evident that the higher concentrations at cell boundaries drastically inhibited migration. Inclusions would not have been responsible for this inhibition since according to recent work on cellular segregation,5 no second phase should have occurred in the segregated regions at the cell boundaries for the conditions of growth used, at least in the Pb-Sn system. In the purest lead, only the "special" boundaries observed by Aust and Rutter gave rise to the same activation energy as that obtained in grain growth. It is reasonable to suppose that the structure of special boundaries does not favor segregation at low concentrations and thus solute, or an inhomogeneity in its distribution, would have no effect. Random boundaries, on the other hand, are affected by solute and the substructure would enhance residual concentrations in the zone-refined lead, leading to a higher activation energy. It is clear, even without a detailed theory, that the apparent activation energies and exact solute dependence in the two experiments must be different as long as the non-uniform solute distribution produced by the substructure is important. Recrystallization experiments should also be susceptible to the same kind of local segregation at subboundaries or disloca tion cell walls; a suggestion similar to this has been made by Leslie et al.' Following the arguments presented here, the effects of a given solute concentration would be like those observed by Aust and Rutter if segregation occurred, and like those of grain growth otherwise. This work was partially supported by the Air Force Office of Scientific Research; Contract AF-49(638)-1029.
Citation

APA: G. F. Bolling  (1962)  Institute of Metals Division - Some Remarks on Grain Boundary Migration (TN)

MLA: G. F. Bolling Institute of Metals Division - Some Remarks on Grain Boundary Migration (TN). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account