Institute of Metals Division - Stabilization Phenomena in Beta-Phase Au-Cd Alloys

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 2240 KB
- Publication Date:
- Jan 1, 1960
Abstract
The effect of 1ow-temperature stabilization anneals on the structure of the 0 phase Au-Cd alloys and on the diffusionless transformations observed in these alloys was examined by X-yay diffraction techniques. A phase separation in the ß-phase region was proposed to account for the experimenta1 results. The effects of quenching from elevated temperatures on the transformation behavior of these alloys were shown to be consistent with the proposed mechanism. IT has been shown that the high-temperature ß phase (CsCl structure) of the Au-Cd alloy system transforms to a phase having an orthorhombic (D2) ß' structurel1-3 for compositions near 47.5 at. pct Cd and a tetragonal (4/m, m, m) ß" structure* in the vicinity of 50.0 at. pct Cd. Both transformations are diffusionless, crystallographically reversible, and occur on cooling at about 60° and 30°C respectively. The temperature interval from the beginning to the end of the transformation is of the order of 5°C in each case. Although the transformations are normally athermal, some of them have been reported to occur isothermally.= wechsler6,7 has shown that the effects of quenching a 49.0 at. pct Cd alloy from elevated temperatures are consistent with the retention of a nonequilibrium number of lattice vacancies. Annealing of these quench effects results in a broadening of the X-ray reflections.8 After a suitable quench, the 47.5 at. pct Cd alloy transforms to a phase having not the p' orthorhombic structure but another structure which has properties similar to that of the ß" tetragonal structure.5.9 This change in the type of transformation has also been obtained after long anneals in the ß-phase region at about 70oC10 The present investigation was primarily concerned with the structural changes accompanying the above transformation phenomena. The change in transformation product and accompanying physical changes during an anneal in the ß phase have been termed stabilization effects. Experimental Procedure —The results reported in this investigation were obtained with the use of a Norelco diffractometer fitted with a temperature-controlled cryostat. The specimen temperature was controlled to better than ± 0.l°C during the measurements. CrKa radiation monochromated electronically with the use of a scintillation counter and pulse height analyzer was utilized. Specimens containing 47.5 and 50.0 at. pct Cd were prepared by sintering filings obtained from homogenized ingots of the proper alloy composition. (Gold of 99.999 pct purity and cadmium of 99.98 pct purity were used). All heat treatments were carried out with the specimens capsulated in vacuum ( < 10 % mm Hg) or in a He-H gas mixture. The quenching technique used in these experiments was to drop the pyrex capsule which contained the specimen from the annealing furnace into water, the temperature of which was controlled. The pyrex capsule shattered on contacting the water resulting in a relatively rapid quench. After the heat treatment, the specimens were mounted in the diffractometer and were left undisturbed in the diffractometer specimen holder during each sequence of measurements. EXPERIMENTAL RESULTS A) Low-Temperature Annealing—The transformations which were considered "normal" for these alloys were those obtained athermally during furnace cooling at approximately 50°C per hr after an elevated temperature anneal. Under these experimental conditions, the specimens were observed to transform to phases having structures whose diffraction patterns could be indexed as the ß' orthorhombic structure for the 47.5 at. pct Cd and as the 0" tetragonal structure for the 50.0 at. pct Cd alloys. The transformation temperatures on cooling were approximately 60" and 30°C, respectively. Under the "normal" conditions both transformations were observed to go to completion, i.e., the entire volume of the ß phase was transformed to the product phase. In some specimens an extremely weak ß 110 reflection was observed at 20°C indicating that a small amount of retained ß was present. The effect of low-temperature annealing on the nature of the diffusionless transformations was examined for the 47.5 and 50.0 at, pct Cd alloy. The specimens were annealed in evacuated capsules at temperatures in the vicinity of 600°C (as specified in Table I) for 24 hr and were then cooled to 100°C at a rate of 50°C per hr. The specimens were then removed from the capsules and mounted in the diffractometer without allowing the specimen temperature to drop below 80°C. Annealing at the low temperatures was accomplished in the diffractometer by means of the cryostat which was mounted around the specimen. During the low-temperature anneals the lattice parameter, integral breadth of the reflections, and ratios of the integrated intensities of the fundamental and super lattice reflections for the 0 cubic phase were periodically determined. After annealing for the required time, the specimens were slowly cooled in the diffractometer and the diffraction patterns were recorded as a function of temperature. The specimens were cooled until the phase transformations were completed, following which the specimens were heated and diffraction
Citation
APA:
(1960) Institute of Metals Division - Stabilization Phenomena in Beta-Phase Au-Cd AlloysMLA: Institute of Metals Division - Stabilization Phenomena in Beta-Phase Au-Cd Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1960.