Institute of Metals Division - Stress-Induced Martensitic Transformations in 18Cr-8Ni Steel

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 1983 KB
- Publication Date:
- Jan 1, 1964
Abstract
A commercial 18Cr-8Ni iron alloy (AISI 304L) was examined in tension at 300°, 76°, 20°, and 4°K. Continuous stress-strain recordings were made, X-ray analyses at periodic stress (strain) intervals were obtained, and the magnetic measurements were taken. From this data the percentage of martensitic products [bcc(a) and hcp (E)] was computed as a function of stress (strain). It was found thatup to 15 pct E phase forms at low temperntures. The amount of E formed increases to a maximum at about 5 pct strain, then decreases. This decrease indicates the additional transformation of E to a'. The total amount of E and a' was suppressed at constant stress (strain) at 4°K as compared to 76°K. It is proposed that the suppression of E and a' is associated with the decreased mobility of extended dislocations at very low temperatures. The yield strength decreased as the temperature was depressed below room temperature and then increased rapidly near 4°K. SOME ferrous alloys which are austenitic (fcc ?) at room temperature appear to be unique in that two martensitic products (hcp e and bcc a') may form on cooling to lower temperatures or on application of mechanical stress. The most common room-temperature austenitic ferrous alloys are 18Cr, 8Ni stainless steels. Most aspects of the spontaneous transformations have been previously described for these steels.' Several previous papers have described special aspects of the stress-induced transformations at low temperatures for the stainless steels, such as the existence of the hcp phase (c) after straining at 76oK,2-7 the morphology after straining using electron microscopy,7 and the decrease in E at higher strains at 76oK.4 However, for a complete representation, one must know the stress-strain characteristics and the dependence of both martensitic products on applied stress and temperature. It is the intention of this paper to provide that documentation. To accomplish this, continuous stress vs strain recordings were made at four temperatures: 300°, 76", 20°, and 4°K for annealed AISI 304L (a commercial 18Cr-8Ni alloy). At periodic stress intervals at each temperature the integrated X-ray line intensity of a selected peak for each phase (y, E, and a') was measured. In addition, photomicrographs of the strained surfaces were taken and magnetic measurements were made. The magnetic readings can be directly converted into percent a'.',e With these measurements the percentage of each phase may be plotted as a function of stress (or strain) and test temperature. It was found that up to 15 pct E phase forms upon stressing the AISI 304L alloy at low temperatures. The E percentage increases abruptly after the alloy yields, but then decreases gradually at higher stresses. The rapid increase in e at 76°K is associated with an "easy-glide" portion of the stress-strain curve. The total amount of a' + .G is suppressed below 76°K at a constant stress or strain. The yield strength decreases down to 76°K but increases rapidly below 20°K. EXPERIMENTAL PROCEDURE Tensile test specimens were cut parallel to the rolling direction from 0.1-in.-thick sheet. Continuous stress vs strain recordings were obtained at each test temperature (300°, 76o, 20°, and 4°K) using equipment and methods described elsewhere.' The specimens which were used in the X-ray analysis were stressed to successive increments of strain at each temperature, analyzed at room temperature, then restressed at the test temperature. This procedure was repeated until approximately ten X-ray analyses had been performed with approximately 1.0 pct strain increments. The specimens had a reduced section 1 in. long, 1.2 in. wide, and 0.1 in. thick. They were electro polished prior to testing and after each strain increment. Table I lists the chemical composition, grain size, and hardness for the alloy which was used. This is the same alloy for which extensive mechanical-property tests3 and morphological studies of the spontaneous transformations' have previously been made. For the low-temperature tests (76o and 4°K) below the Ms temperature the specimens were initially cooled to the test temperature, held for 1/2 hr, then warmed and X-rayed at room temperature. The results are listed in Table 11. From earlier work8 it was known that additional transformation on the second cycle would be considerably less (-0.1 pct
Citation
APA:
(1964) Institute of Metals Division - Stress-Induced Martensitic Transformations in 18Cr-8Ni SteelMLA: Institute of Metals Division - Stress-Induced Martensitic Transformations in 18Cr-8Ni Steel. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1964.