Institute of Metals Division - Structural Relationships Between Precipitate and Matrix in Cobalt-Rich Cobalt-Titanium Alloys

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 1068 KB
- Publication Date:
- Jan 1, 1962
Abstract
Precipitation of the phase Co3Ti (Cu3Au type) from a Co-5 pct Ti a11oy has been investigated using single-crystal X-ray diffraction techniques. Oscillation and transmission Laue patterns of specimens aged for short-time periods at 600" C indicate the formation of titanium-rich and titanium-poor zones coherent with the {100} matrix planes. Longer aging times at 600° C establish that the equilibrium phase also forms on the {100} matrix planes as platelets. These observations are corroborated by electron metallography; electron diffraction studies show the phase Co3Ti to be ordered. A probable sequence of the precipitation reaction is discussed. A previous publication by two of the present authors reported on the phase relations and precipitation in Co-Ti alloys containing up to 30 pct Ti.1 The results of this investigation established the existence of a new face-centered cubic inter metallic phase, ranging in composition from about 17.0 to 21.7 pct Ti at temperatures below 1000° C The decomposition of the fcc supersaturated solid solution was studied employing hardness and electrical resistivity measurements. The changes in hardness upon precipitation in alloys containing 3, 6, and 9 pct* Ti were found to be associated with an initial increase in hardness followed by a plateau and then a second, more pronounced hardness increase. Investigation of this behavior by electrical resistivity measurements suggested that two different kinetic processes were involved, which, when interpreted in terms of the kinetic relation,2-4 indicated that initial precipitation was in the form of thin plates. On continued aging, the plates impinged during the growth process. The general features of these findings have been confirmed by Bibring and Manenc,5 while, in addition, they report the phase to be ordered. The present investigation was undertaken to provide more definite information on the structural relationships between the precipitate and the matrix. EXPERIMENTAL PROCEDURE Single crystals of a (20-5 pct Ti alloy were prepared from the melt employing the Bridgman technique. Poly crystalline rod, 1/2 in. in diam, prepared from vacuum-melted material, was machined to 3/8- in. diam to remove any surface contamination that may have resulted from hot-working. The crystals were grown under a purified hydrogen atmosphere in high-purity alumina crucibles heated by induction. Considerable difficulty was encountered in attempting to grow monocrystals because of the high melting point of the alloy and the high solute concentration. However, one crystal about 6 in. long was obtained which was essentially a single crystal except for one or two very small grains around the periphery. The as-grown crystal was solution heat-treated for 24 hr at 1200°Cin a purified argon atmosphere and water-quenched. One-quarter-in. slices were taken from each end of the solution heat-treated crystal for chemical analyses, and the remainder of the crystal was mounted and oriented by the back reflection Laue Method. The chemical analysis of the crystal was as follows: Pct Ti Pct 0 Pct C Pct N Pct H Pet CO 5.29 0.08 0.004 0.002 0.0003 Balance By proper tilting of the crystal, it was possible to obtain slices 1/32 in. thick of [loo] and [110] orientation. The solution heat-treated crystal slices were sealed in silica capsules for the aging treatments, with titanium sponge placed at one end of the capsule to act as a getter. All slices were water-quenched from the aging temperatures, the capsules being broken under the water to ensure a rapid quench. Thinning of the slices for transmission X-ray studies was accomplished by a combination of mechanical and electrolytic techniques, the final thickness being about 0.1 mm. Laue patterns of the solution heat-treated crystal indicated that no strain was introduced by the thinning technique. ELECTRON METALLOGRAPHY After X-ray examination, the structural changes attending the precipitation were followed by examination of direct carbon replicas of polished and etched surfaces of the single-crystal slices and extracted phases. The earliest indication of significant structural change was observed after aging at 600°C The structure of a heavily etched, solution-treated crystal is shown in Fig. l(a). Aside from the etch pit pattern, no regularity of background structure is observed. On the other hand, in the background of the specimen heated for 500 hr at 600°C, the etching pattern shows a directionality indicating the influence of minute precipitate particles, Fig. l(b). On electrolytic dissolution of this specimen in 10 pct HC1 in alcohol, a large volume of very small, flattened cubes
Citation
APA:
(1962) Institute of Metals Division - Structural Relationships Between Precipitate and Matrix in Cobalt-Rich Cobalt-Titanium AlloysMLA: Institute of Metals Division - Structural Relationships Between Precipitate and Matrix in Cobalt-Rich Cobalt-Titanium Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.