Institute of Metals Division - Structure and Magnetic Properties of Some Transition Metal Nitrides

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 9
- File Size:
- 868 KB
- Publication Date:
- Jan 1, 1956
Abstract
Several transition metal nitrides have been prepared and their saturation magnetization determined. On the basis of an atomic model of ferromagnetism involving a consideration of nearest neighbor interactions and the assumption that all atomic moments of the metal point in the same direction, it appears that the nitrogen interacts with d-shell of the transition metal in such a way as to reduce the magnetic moment. THERE is a large class of materials having metallic properties which are formed by a combination of hydrogen, boron, carbon, oxygen, or nitrogen with the transition metals. Several attempts have been made to establish the type of metal-nonmetal bonding in these interstitial alloys because it is believed that many of the physical properties of these materials are determined by the characteristics of this bond. Several of these alloys are ferromagnetic, and thus a powerful method is available for investigating the structures in a direct manner by measuring the saturation magnetization. The latter is a fundamental property of ferromagnetic metals and alloys which depends primarily on the electron distribution surrounding the atom. For the first row of transition metals, this refers specifically to the 3 d-shell. Since bonding involves the electronic configuration between atoms, there is reason to suppose that a relationship exists between ferromagnetism and bond type. In the case of the interstitial structures studied in this work, bonding will refer to the distribution of electrons between the transition metal and the nonmetal. Since these alloys have metallic properties, it is further proposed that any bonding interactions will involve the outer p-shell of the interstitial element and the incomplete d-shell of the transition metal. If this is the case, then the relationship between ferromagnetism and metal-non-metal bonding is established qualitatively. In order to investigate the subject quantitatively, certain transition metal nitrides were chosen because they have simple crystal structures, are ordered alloys, and are ferromagnetic. They also have sufficiently high saturation magnetization to be of technical interest. Currently there are two major theories of ferromagnetism, each of which has been applied to the interpretation of the saturation magnetization in terms of atomic structure. They are usually referred to as the band theory and the atomic theory. The former has found widespread application to the study of pure metals and certain solid-solution allays. However, it has not been applied to the interstitial structures or ordered alloys because it does not interpret the properties directly in terms of the crystal structure. The atomic theory on the other hand is especially suited to the study of interstitial structures because it permits an interpretation of ferromagnetic phenomena in terms of the crystal geometry. As has been pointed out previously, the nitrides have simple ordered crystal structures and, therefore, the choice of the atomic theory for the interpretation of the data is a natural one. One of the prime difficulties with the atomistic theory is that its mathematical justification is much more difficult, and for this reason its general acceptance will depend to a large extent on the value it has in explaining and predicting the results of experiment. Before the presentation of the theoretical basis for understanding the metal-nonmetal bond, it is useful to review the ideas existing prior to this work. Four different interpretations have been given to the metal-nonmetal bond. These are summarized as follows: 1—acceptance of electrons by the nonmetal from the incomplete d-shell of the transition metal, 2—transfer of electrons from the nonmetal to the incomplete shell of the transition metal, 3—no exchange of electrons between the two atoms, and 4— a resonating type of bond involving the p electrons of the interstitial atom giving rise to half bonds. Zener'-4 in a recent series of papers has proposed a new theory of ferromagnetism and has developed an explanation of the observed saturation magnetization of iron nitride (Fe,N) using the concept that nitrogen accepts electrons from the 3d-shell of iron. Jack," on the basis of atom size considerations in iron carbonitrides, has proposed that nitrogen transfers or donates electrons to the inner 3d-shell. He found that the effective size of the carbon atom was less than that of nitrogen and thus suggested that the interstitial atoms give up electrons. Kiessling" has studied the borides of several transition metal atoms and proposed that boron loses one p electron to the transition metal. He postulated that the additional electron added to the metal lattice compensates for the loss in metallic properties which results from the increased metal-metal atom separation. GuillaudT3" has proposed similar arguments from some recent magnetic studies he had made on manganese nitride. However, he did not base his conclusions on a quantitative argument. Pauling," in a recent paper, discussed electron transfer in in-termetallic compounds. He classified nitrogen as a hyperelectronic atom which can increase its valence by giving up electrons. He classified the transition metals as buffer atoms which are capable of either accepting or giving UP an electron. He pointed out that two factors are operating which promote electron transfer because they lead to increased stability. The first is an increase in the number of bonds, and the second is a decrease in the electric charges on the atoms. These ideas when applied to the interstitial nitrides would indicate a viewpoint favoring electron transfer by nitrogen to the transition metal. Hagg7s arguments in favor of no exchange are adequately summarized by Wells." Implicitly, Hagg
Citation
APA:
(1956) Institute of Metals Division - Structure and Magnetic Properties of Some Transition Metal NitridesMLA: Institute of Metals Division - Structure and Magnetic Properties of Some Transition Metal Nitrides. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1956.