Institute of Metals Division - Surface Tension of Solid Gold

The American Institute of Mining, Metallurgical, and Petroleum Engineers
F. H. Buttner H. Udin J. Wulff
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
219 KB
Publication Date:
Jan 1, 1952

Abstract

Using a modified Udin, Shaler, and Wulff technique, the surface tension of gold Udin, purified helium was found to be 1400 ± 65 dynes per cm for the temperature range 1017° to 1042°C. IN the original Udin, Shaler, and Wulff technique for measuring the surface tension of copper: variously weighted wires were allowed to extend or contract in a copper cell held at elevated temperatures in vacuum. By plotting stress vs. strain for a wire array in one test, the stress at zero strain is obtained. This is the point where the contractile forces resulting from surface tension are balanced by the applied load, according to the expression: y = e=o r [1] where y is the surface tension in dynes per cm; a,,,, the stress at zero strain in dynes per cm; and T, the radius of the wire in cm. The assumption that the wires deform viscously permits the drawing of a straight line through the points on the stress-strain plot. Justification of the assumption has received further experimental support recently.'-' The presence of grain boundaries in the wires requires a correction to the original expression used." Thus: y = d4=T [l- (dl) (ar)Y1 [2] where, n/l is the number of grain boundaries per unit length, and a, the ratio of grain boundary tension to free surface tension. Alexander, Kuczynski, and Dawson in studying the creep of gold wire in vacuum were unable to obtain reproducible values of the surface tension of gold. In plotting stress vs. strain for progressively longer times, they found that the stress at zero strain drifted with time from positive stress values to negative values. Similarly, for the surface tension of silver, reproducible values were obtained only when a purified helium atmosphere was substituted.' Evidently the evaporation rate of silver in vacuum is too high at the temperatures employed to obtain solid-gas equilibrium even in a similar metal enclosure. Thus reproducibility of results is lost. Experimental Procedure The experimental procedure was much the same as that originally developed by Udin, Shaler, and Wulff with a few modifications and improvements. For greater accuracy in strain measurements, knots gave way to cut gage marks as shown in Fig. 1. These were made with a hand-driven lathe in which razor blades serv'ed as cutting tools. Also a more precise cathetometer with a screw accurate to 0.00015 cm was used. The tests were conducted in an atmosphere of purified .helium rather than in vacuum in order to avoid possible evaporation difficulties. Five mil wire of high purity gold (99.98 pct) was used. After cutting in the gage marks, each wire of a series of about 12 was differently loaded by welding a gold ball to one end. This was done by dipping the end of the wire in a cooling gold droplet, previously melted on a charcoal block with a No. 2 acetylene torch. The other end of the wire was strung through a hole in a gold lid and twisted over the edge to hold the wires fixed and in suspension from the lid. The lid and mounted wires were then dipped in pure ethyl alcohol to dissolve any skin oils and dirt on the surface of the wires due to handling. Finally the lid was put in place on an alundum crucible lined with gold so that the wires hung freely within the gold-lined chamber. This whole assembly was next heated in a quartz nichrome wound tube furnace and heated for a few minutes at 600°C to soften the wires. After this anneal the wires were easily straightened with tweezers. The wire assembly was finally annealed 10" to 25°C above the subsequent test temperature for 2 hr. This treatment allowed the grains to grow to equilibrium size and shape. After the anneal, the lid was mounted in front of the cathetometer. The gage length was measured by sighting the 40 power microscope on the upper lip of the lower gage mark for the first reading, then traveling up to the lower lip of the upper gage mark for the final reading. This procedure was repeated four times to give an average gage length value. In this manner the annealed gage length and the final gage length could be measured to determine the strains. During all measurements, grain counts were made.
Citation

APA: F. H. Buttner H. Udin J. Wulff  (1952)  Institute of Metals Division - Surface Tension of Solid Gold

MLA: F. H. Buttner H. Udin J. Wulff Institute of Metals Division - Surface Tension of Solid Gold. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account