Institute of Metals Division - System Zirconium—Copper

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 677 KB
- Publication Date:
- Jan 1, 1954
Abstract
PRIOR work on the Zr-Cu phase diagram by Alli-bone and Sykes,' Pogodin, Shumova, and KUGU cheva,' and Raub and EngeL3 as confined largely to copper-rich alloys. The investigations of Raub and Engel were the most recent and seemingly the most complete of these. Alloys from 0 to 68.3 pct Zr were studied principally by thermal analysis and microscopic examination. These authors reported an inter metallic compound ZrCu, (1116°C melting point) and two eutectics, one at 86.3 pct Cu (977°C mp) and the other at 49 pct Cu (877°C mp). The solubility of zirconium in copper was reported to be less than 0.1 pct at 940°C. The zirconium melting stock consisted of Westing-house "Grade 3" iodide crystal bar (nominally 99.8 pct pure). It was treated by sand blasting and pickling (HF-HNO, solution) to remove the surface film of corrosion product, resulting from grade designation tests. The crystal bar was cold rolled to strip, lightly pickled again, and cut into pieces approximately 1/32 in. thick and 1/4 in. square. These were cleaned in acetone, dried, and stored for charging. The high-purity copper (spectrographic grade) was supplied by the American Smelting and Refining Co. with a nominal purity of 99.99 pct. These copper rods were rolled to strip, cut into squares the same size as the zirconium platelets, cleaned in acetone, dried, and stored. Equipment and Procedures The equipment used for melting and annealing the zirconium binary alloys and for the determination of solidus curves has been described in connection with previous work on the Ti-Si system' and in recent papers in this series describing the studies on eight binary zirconium systems.5-' Techniques employed for preparing and processing the alloys were also similar to those used in the above references. Ingots of 20 g were melted under a protective atmosphere of helium on water-cooled copper blocks in a nonconsumable electrode (tungsten) arc furnace. The ingots were homogenized and cold-worked prior to isothermal annealing to aid in the attainment of equilibrium. The specimens were heat-treated in Vycor bulbs sealed in vacuo or under argon, depending on the temperature of the anneal. Quenching was accomplished by breaking the Vycor bulbs under cold water. Temperature control was within ±3OC of reported temperatures. Thermal analysis was primarily relied on to determine eutectic levels, peritectic levels, and compound melting points. The induction furnace incipient melting technique was also used but did not provide the accuracy obtained by thermal analysis in this system, which involves much lower solidus temperatures than the other zirconium systems. A special technique for the determination of characteristic temperatures was employed in the case of several intermediate phases and their eutectics which displayed very small differences in melting temperatures. Specimens were sealed in Vycor bulbs and annealed at a series of very accurately controlled temperatures. Metallographic examination was then employed to reveal incipient melting. Furnaces and techniques in general were described previously.' The echant used was 20 pct HF plus 20 pct HNO3 in glycerine unless otherwise stated. Results and Discussion The chemical analyses of the majority of alloys prepared for the determination of phase relationships in this system are given in Table I and a brief summary of the equilibrium anneals employed is given in Table 11. In a preliminary program, alloys containing 1, 4, and 7 pct Cu were annealed for three different times at each of the temperatures 700°, 800°, and 900°C. No change in the relative amounts of phases present was detected after 350, 150, and 75 hr at the above temperatures, respectively. The times listed in Table II were accordingly chosen as a result of these preliminary tests. Zirconium-rich alloys containing from 0.1 to 10 pct CU were reduced by cold pressing from 58 to 8 pct, depending upon thk alloy content, homogenized for 7 hr at 900°C, and then reduced 80 to 13 pct by cold rolling, again depending upon copper content. Other alloys were studied in the cast, or cast and annealed conditions. The contracted scope of investigation for this system included the range 0 to 50 atomic pct Cu. This approximate region is shown in Fig. 1. Due to evidence of phase relationships departing considerably from those proposed by Raub and Engel" in the 50 to 100 atomic pct range, the investigation was extended to cover this composition area rather thoroughly also. Fig. 2 is a drawing of the entire diagram. The labeling of some phase fields was omitted in Fig. 2 for the sake of clarity. An expanded view of the zirconium-rich region, with the experimental points necessary for its construction, is given in Fig. 3. The generally accepted value of Vogel and Tonn8 or the allotropic transformation a + 862' ±5OC, was employed in the construction of these diagrams. A careful study revealed that the "Grade 3" crystal bar used in this investigation actually transforms over the approximate range 850" to 870°C, due to impurities. It must be expected that this two-phase field in unalloyed zirconium will cause some departures from binary ideality in the very dilute alloys. Zirconium-rich Alloys: The a + ß transformation temperature is decreased from 862" to about 822°C by increasing amounts of copper. Thus, a eutectoid reaction, fi ß a+ Zr,Cu, occurs at a composition of about 1.6 pct Cu. The eutectoid level was determined to lie between the alloy series annealed at 815" and 830°C. The placement of this eutectoid temperature
Citation
APA:
(1954) Institute of Metals Division - System Zirconium—CopperMLA: Institute of Metals Division - System Zirconium—Copper. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1954.