Institute of Metals Division - The Creep Behavior of Heat Treatable Magnesium Base Alloys for Fuel Element Components (Discussion)

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 290 KB
- Publication Date:
- Jan 1, 1962
Abstract
J. E. Harris (Berkeley Nucclear Laboratories, England)—Greenfield et al.11 attribute abrupt changes in slope of their log o/log i curves for heat-treated Mg/0.5 pet Zr alloy (zA) to 'atmosphere' locking. It is proposed here that a more reasonable explanation of the apparent strengthening at low rates of strain can be based on precipitation either during the preanneal or during the creep tests. All the tests were carried out above 0.5 Tm where solute atmospheres are likely to be largely evaporated2 and can migrate sufficiently rapidly so as not to impose any 'drag' on the moving dislocations. McLean3 has derived an expression for determining the temperature Tc above which, due to the high-migration rate of the atmospheres, Cottrell or Suzuki locking can play no part in determining creep strength. This expression, which holds for an applied shear stress of not greater than 5 X 107 dynes per sq cm is: Tc/Tm= 7/6.8 - log10? where i = secondary creep rate The values for T, corresponding to the maximum and minimum reported creep rates at each temperature have been calculated from the data of Greenfield et al. These are given in Table VII. All the test temperatures were above T,, the margin being greater for the higher temperatures and for the lower strain rates where the breaks in the log s/log ? curves occurred. Dorn and his collaborators14, 17 have studied systematically the effect of solute hardening on the creep properties of an A1/3.2 at. pet Mg alloy. In the temperature range where strain aging occurred in tensile tests, abnormally high-activation energies for secondary creep were obtained but at temperatures above 0.43 Tm, solute alloying did not have any effect on the creep parameters. Moreover, there have been no reports of any strain aging phenomenon during elevated temperature tensile tests with ZA material.18 Instead of the observed strengthening being due to atmosphere locking, it is now proposed that precipitates play an important role in enhancing the creep strength of the material. There are two possibilities—precipitation of zirconium hydride during the high-temperature preanneal and/or precipitation of the hydride or a-zirconium during creep. On the basis of the former the results can be interpreted in terms of a critical stress being necessary to force the dislocations through or over preexisting precipitates. From the latter, if the strengthening is due to pre- cipitation during the test then hardening should be associated with a critical strain rate. At low rates of strain, time is available during the tests for precipitation to occur either directly onto dislocations (thus pinning them) or generally throughout the matrix (which would impede dislocation movements). Examination of the data of Greenfield et al. suggests that both mechanisms may be operative since they observed precipitation during creep and also found that their alloys exhibited high-creep strength in the early stages of the low-stress tests, i.e., before creep-induced precipitation had time to occur. It is not easy to understand why they considered that precipitation of zirconium hydride is unlikely to occur at 600°C while it can take place in tests in air at as low a temperature as 200°C. Precipitation of the hydride during the preanneal cannot be ruled out merely on the basis of metallographic examination. Hydride precipitates in ZA type alloys are very small and can only be accurately resolved in the electron microscope.9 For example, in this laboratory20 hydride platelets with major dimensions <(1/10) µ have been observed by electron transmission through thin film specimens of hy-drogenated ZA material. Complex interactions between dislocations and such particles are illustrated in Fig. 12. Additional evidence for precipitation during pre-annealing is provided by the data presented in Greenfield's Fig. 1 and Table IT. These show that the creep strength at 200o and 400°C increases with the time of preanneal at 600°C. Such increases cannot be explained on the basis of increases in grain size alone for further improvements in strength were observed when the material was annealed for longer times than that required to stabilize the grains. Although the main discussion is confined to ZA material, similar arguments can be used against the strain aging hypothesis proposed to explain the binary Mg/Mn alloy data. In this case no precipitation is possible during the preanneal, but precipitation-hardening during creep can occur.
Citation
APA:
(1962) Institute of Metals Division - The Creep Behavior of Heat Treatable Magnesium Base Alloys for Fuel Element Components (Discussion)MLA: Institute of Metals Division - The Creep Behavior of Heat Treatable Magnesium Base Alloys for Fuel Element Components (Discussion). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.