Institute of Metals Division - The Development of High Strength Alpha-Titanium Alloys Containing Aluminum and Zirconium

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 9
- File Size:
- 612 KB
- Publication Date:
- Jan 1, 1963
Abstract
The tensile properties, creep resistance. and thermal stability of highly alloyed Ti-Al-Zr alloys were examined. On the basis of these studies, the Ti-7Al-1ZZr composition was selected for more complete evaluation. The alloy was found to be weldable and free from excessive directionality. In addition, it developed maximum properties without requiring heat treatment other than an annealing operation in the alpha field. The alloy was recommended for scale up and is presently being investigated on a production-level basis. One of the more attractive properties of titanium alloys is their ability to withstand stress at moderately high temperatures, and a considerable amount of effort has been devoted to increasing the maximum service temperature of titanium alloys. This work has suggested that the optimum alloys for high-temperature service will be single-phase a (close-packed hexagonal) alloys containing significant amounts of aluminum. However, the maximum amount of aluminum which can be alloyed with titanium is between 6 and 8 pct,l since at high-aluminum contents an embrittlement reaction occurs in the anticipated service temperature range, 800" to 1100°F. It has been shown that the embrittlement reaction involves decomposition of the high-aluminum a phase to one or more new phases.' Since this reaction does not occur at intermediate or low-aluminum contents, it was felt that intermediate Ti-A1 alloys might be strengthened by a-soluble ternary additions without inducing the embrittlement reaction. The first alloying addition considered was tin, which shows extensive solubility in a titanium and has moderate strengthening tendencies. Unfortunately, it was soon apparent that tin also promoted the embrittlement reaction, and that to obtain a stable alloy, the aluminum content had to be reduced as the tin content was increased. The second alloying addition considered was zirconium, which is similar to tin in its effects on titanium. This element did not contribute to the embrittlement reaction and, in fact, appeared to increase the maximum amount of aluminum which could be alloyed with titanium without inducing instability. This paper describes an investigation of the Ti-A1-Zr a alloy region. Alloys containing from 4 to 12 pct A1 and from 6 to 15 pct Zr were examined. The properties of these alloys are described and the bases for selecting an optimum composition is outlined. This composition, Ti-7A1-12Zr, is presently being scaled up in tonnage quantities, and is being evaluated extensively throughout the industry. In addition to presenting the basis for its selection, this paper presents a description of the properties developed in laboratory material as determined during the alloy investigation. These properties suggest that this alloy can fill an important position in applications requiring light weight, fabrica-bility, weldability, and strength to 1000oF or higher. EXPERIMENTAL PROCEDURES Titanium alloy ingots were prepared by inert electrode arc melting under an argon atmosphere. Alloying elements used were 110 Bhn titanium sponge, high-purity aluminum, and reactor-grade zirconium. Pancake-shaped ingots were prepared weighing approximately 300 g. The composition of the ingots was checked by weight measurements before and after melting. The pancake ingots were forged at 2000°F to approximately half their original thickness to give a flat plate roughly 1/2 in. thick. This plate was then rolled at 1800' to 1600°F to 0.250 in. thick. All of the alloys examined fabricated well. However, alloys containing 15 pct Zr tended to overheat due to exothermic oxidation, and scaling was excessive. As might be anticipated from its effect in decreasing the ß transus, increased zirconium appeared to improve fabricability somewhat, especially during rolling at lower temperatures. Except for a limited study of heat-treatment response, all alloys were examined in the a-annealed condition. Prior to heat treatment the a and ß tran-sus temperatures were determined by metallo-graphic examination of samples quenched after annealing at 50-deg intervals in the transformation region. These data are shown in Fig. 1. Recrystal-lization appeared to occur in about 1 hr in the range 1300º to 1500ºF. Therefore, alloys were annealed for 1 hr at 1550ºF (4 and 5 pct Al), 1600ºF (6 through 7-1/2 pct Al), or 1650°F (8 or more pct Al). This produced an equiaxed a grain structure. In most alloys, a "ghost" structure was visible after the a-annealing treatment, as shown in Fig. 2. This structure apparently resulted from the acicular
Citation
APA:
(1963) Institute of Metals Division - The Development of High Strength Alpha-Titanium Alloys Containing Aluminum and ZirconiumMLA: Institute of Metals Division - The Development of High Strength Alpha-Titanium Alloys Containing Aluminum and Zirconium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1963.