Institute of Metals Division - The Molybdenum-Boron System

The American Institute of Mining, Metallurgical, and Petroleum Engineers
P. W. Gilles B. D. Pollock
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
321 KB
Publication Date:
Jan 1, 1954

Abstract

THE pioneering work of Steinitz1 and Steinitz, Binder, and Moskowitz2 has shown conclusively the existence at high temperature of two additional phases in the molybdenum-boron system and thus brings to a total of six the number of structures appearing in this system. To the structures Mo2B, MOB, and Mo2B5 they have added MO3B2, a new -MOB form, and have shown that MOB,, which has the same range of composition as Mo2B5, is only a high temperature structure of the latter. This solid solution, interestingly enough, includes neither of the compositions corresponding to the stoichiomet-ric compounds, MOB, or Mo2B5, but rather at all temperatures has intermediate values of composition. These workers have also, in the course of their work, measured melting points, transition temperatures, eutectic and peritectic points in the system and have shown that Mo3B2, because of its dispro-portionation at low temperature to Mo2B and MOB, is stable only in a limited high temperature range. During the course of the present work on the vaporization properties of the molybdenum-boron compounds, a few transition temperatures were observed. When the report of the other workers appeared, it was decided to repeat, in part, their study of the system. As a result, considerable evidence has been obtained that substantiates the specific kinds of melting processes they report as well as the general features of their diagram. However, a marked difference was found between the temperatures they report and the ones observed in this study, with the latter being higher. The purposes of this paper are to present the evidence obtained in this laboratory that verifies their diagram of the system, to give some important temperatures in the system, to compare them with those previously published, and to seek an explanation of the difference. Samples The metal starting material was 400 mesh molybdenum powder with a purity stated by the manufacturer to be 99.9 pct. The initial treatment, designed to remove volatile contamination, consisted of heating in a vacuum for 10 min to a temperature of from 800" to 1000°C during which a loss of 0.3 to 0.4 pct occurred. An assay following this treatment showed it to be 99.4 pct pure, with the principal impurity probably being oxygen. The boron starting material was obtained from the Cooper Metallurgical Laboratories and the Fair-mount Chemical Co. as 325 mesh powder with manufacturers' analyses of 99 pct or better. Initial treatment consisted of heating in molybdenum in a vacuum at about 1700°C for 10 min. During this time a loss of 3.5 pct occurred. An assay following this treatment showed the different samples to have purities ranging from 95.5 to 99.0 pct with iron and carbon as the principal impurities. Following the initial treatment, the elements were combined to form stocks of Mo2B and MOB by heating pressed mixtures in a vacuum to 1100" to 1200°C to accomplish reaction and to 1500" to 1900°C for a few minutes to evaporate the more volatile impurities. Analysis of the two compounds for boron by a modification of the method of Blumenthal3 and for molybdenum by the lead-molybdate method indicated them to have purities greater than 99 pct. The individual samples to be studied had compositions in the Mo2B-MOB range and consisted of mixtures of the stock compounds. Procedure As is usually the case in high temperature work the selection of containers for the samples posed some problems. For vapor pressure studies tantalum crucibles, allowing little contact with the pressed samples, were used and some of the observations made during these experiments are pertinent to the study of the phase diagram. Most of the experiments, however, were performed in graphite containers, as were those of the previous authors. Two kinds of spectroscopic grade graphite crucibles were used. One was a % in. cylinder, 3/4 in. high, containing seven 3/16 in. holes drilled 1/2 in. deep into which were packed samples of the different mixtures weighing 250 to 500 milligrams. The other, consisting of separate crucibles, was prepared by drilling 3/16 in. holes, 1/2 in. deep into 1/4 in. graphite rods % in. long. The 7/8 in. cylinder was heated directly by induction while the small crucibles were packed in a tantalum heating element for induction heating. All heating was done in a high vacuum system in which the pressure was generally less than 1x10-5mm and never rose above 2x10-5mm when the samples were hot. The general pattern of the heating in graphite was to heat rapidly to a temperature somewhat below the desired one, then to raise the temperature slowly. The samples were held for 2 to 5 min at the maximum temperature, which in all cases was far higher than that needed to produce reaction. The short time was employed to reduce possible contamination by the crucible material and to reduce composition changes that would occur because of vaporization. After examination following the heating, the samples were reheated to a higher temperature. Temperatures were measured with a Leeds and Northrup disappearing filament optical pyrometer, certified by the National Bureau of Standards, by sighting through a window at the top of the vacuum
Citation

APA: P. W. Gilles B. D. Pollock  (1954)  Institute of Metals Division - The Molybdenum-Boron System

MLA: P. W. Gilles B. D. Pollock Institute of Metals Division - The Molybdenum-Boron System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1954.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account