Institute of Metals Division - The Origin of Lineage Substructure in Aluminum

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 554 KB
- Publication Date:
- Jan 1, 1962
Abstract
Subboundaries may be revealed in aluminum by the formation of pits on the surface during cooling from elevated temperatures. The pits do not form in the vicinity of high- or low-angle boundaries. They are attributed to the condensation of vacancies from a super saturation produced during coolirzg. Using the vacancy pit and Schulz X-ray techniques for observing low-angle boundaries, a study was made of the transition from the nearly perfect seed to the striated structuke characterist-ic of aluminum crystals grown from the melt. It was found that the individual striation boundaries develop by the coalescence of very small-angle boundaries, as well as by the addition of individual dislocations. Several mechanisms for the formation of striations are discussed. Evidence was found suggesting that a super-saturation of vacancies exists near a growing interface, and it is proposed that the resulting climb of existing dislocalions produces "half'-loops" at the interface, which combine to form the low-angle striation boundaries. LINEAGE, or "striation" boundaries, have been studied in detail by Teghtsoonian and Chalmers 1,2 in crystals of tin grown from the melt, and by Atwater and Chalmers3 in lead. They found that single crystals grown from the melt consist of regions which are separated by subboundaries that lie roughly parallel to the growth direction. A difference in orientation of 0.5 to 3 deg exists between the striated regions; the misorientation is such that the lattice of one region could be brought into coincidence with the lattice of its neighbor by a rotation about an axis approximately parallel to the direction of growth of the crystal. They observed an incubation distance for the formation of striations which increased with decreasing growth rate. They also found that in any crystal, the sum of all rotations of the lattice in one sense, in going from one striation to the next, is very nearly equal to the sum of all the rotations in the opposite sense. A striation boundary, which is a low-angle grain boundary, can be described as an array of dislocations. If it is assumed that suitable dislocations are introduced into the crystal during solidification, the formation of striation boundaries can be explained as a result of the migration of the disloca- tions into arrays. The formation of arrays is energetically favorable since the energy of an assembly of dislocations can be reduced by the interaction of the stress fields when a suitable array is formed. This investigation presents and interprets new information concerning the nature and origin of striation boundaries in aluminum. EXPERIMENTAL TECHNIQUE Single crystals of high-purity aluminum (Alcoa 99.992 pct) were prepared by horizontal growth from the melt.'' The specimens were subsequently electropolished in a solution of 5 parts methanol to 1 part perchloric acid kept between -10° and 0°C in a bath of dry ice and alcohol. The current density was approximately 6 amps per sq in. Doherty and Davis9 have shown that in aluminum sub-boundaries with misorientations of not less than several seconds of arc may be revealed by the vacancy pit technique. During cooling from elevated temperatures pits form on electropolished surfaces of aluminum crystals as a result of the condensation of vacancies.11 Pits do not form in the vicinity of small- or large-angle grain boundaries, presumably because such boundaries act as sinks for vacancies. Boundaries of misorientations down to 3 sec of arc are revealed as pit-free regions, see Fig. 1. The Schulz X-ray technique12 was used to determine the angular misorientations of subboundaries. In this method, white radiation from a micro-focus X-ray tube is used to produce an image of a fairly large area of a single crystal surface. Subboundaries cause splitting in the diffracted image, see Fig. 2. Misorientations down to about 15 sec of arc may be observed with this technique. OBSERVATIONS AND DISCUSSION Figure 1 shows a striated aluminum crystal grown at 10 cm per hr etched by the vacancy pit technique. An incubation distance of about 1 cm is observed before the initiation of striation boundaries. Fig. 2 is a Schulz X-ray photograph of a striated crystal similar to that shown in Fig. 1. A large area of the crystal was studied by means of a series of photographs. Fig. 2, which is a reflection from the (100) plane, included about the first 4 cm of crystal to freeze. There is an incubation distance of about 1 cm, and a distance of about 2 cm over which the angle of misorientation builds up to its final value of approximately one degree. Some twist component can be seen in Fig. 2 at the right side of the photograph. From Fig. 2 it can be seen that the sum of all rotations of the lattice in one
Citation
APA:
(1962) Institute of Metals Division - The Origin of Lineage Substructure in AluminumMLA: Institute of Metals Division - The Origin of Lineage Substructure in Aluminum. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.