Institute of Metals Division - The Oxidation of Hastelloy Alloy X

The American Institute of Mining, Metallurgical, and Petroleum Engineers
S. T. Wlodek
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
9
File Size:
747 KB
Publication Date:
Jan 1, 1964

Abstract

The surface and subscale oxidation reactions were followed by means of continuous weight-gain and metallographic techniques over the range 1600" to 2200°F (871° to 1204 °C) for up to 400 hr. Full identification of all scale and subscale reaction products was obtained by electron and X-ray diffraction. At or below 1800°F (982°C) a linear rate of reaction (QL = 46.0 kcal per mole) governed the oxidation process, extending for up to 100 hr at 1600°F (871 "C). During linear oxidation the surface scale consisted of an amorphous SiO2 film overgrown with Cr 2O 3 and NiCr204. This initial linear process was followed, and above 1800°F completely replaced, by two successive parabolic rate laws (Qp = 60 and 57 kcal per mole). This parabolic reaction involved the formation of a complex scale consisting of Cr2 O3 and smaller amounts of NiCr2O4. Parabolic oxidation appeared to coincide with the disruplion of the silica film present during linear oxidation and was followed by subscale (internal) oxidation of crystobalite and NiCr2O4. The balance between the subscale and surface oxidation reactions controls the oxidation of this commercial alloy. The amorphous silica film appears to result in the linear rate and diffusion through Cr2O3 is the more likely rate-limiting step during parabolic oxidation. THE oxidation of a multicomponent composition is a complex phenomenon not presently amenable to a rigorous classical interpretation. Nevertheless, even a qualitative understanding of the scaling and subscale reactions that occur in a commercial composition can illuminate the reactions that limit its high-temperature stability in an oxidizing environment. This study of the oxidation of Hastelloy Alloy X presents the first of a series of studies with the above approach in mind. Hastelloy X exhibits one of the best combinations of strength and oxidation resistance available in a wrought, solution-strengthened, nickel-base alloy. Although during long time exposure some precipitation of M6C and M23C8 carbides as well as a complex Laves phase occurs, the amounts are probably small enough to have no appreciable effect on the chemistry of the matrix. Radavich has identified the oxidation products on Hastelloy X oxidized for 5 min to 10 hr at 1115°F as NiO and the NiCr2O4 spinel. Oxidation for 5 to 15 min at 1500°F produced a scale of spinel, NiO, and a rhombohedra1 phase, probably Cr2Os. Sannier et 2. have reported continuous weight-gain data for Hastelloy X at 1650" and 2010°F and internal-oxidation measurements after 150 hr at 2010°F. In addition, much of the data on binary Ni-Cr alloys recently reviewed by Kubaschewski and okins' and Ignatov and Shamgunova4 as well as studies of binary Ni-Mo alloys5 are also pertinent to the oxidation of this composition. EXPERIMENTAL Continuous weight-gain measurements and metallographic measurements of subscale reactions were the main experimental techniques used in this study. X-ray and electron diffraction backed up by a limited amount of electron-microprobe analysis served to characterize the nature of the scale- and subscale-reaction products. Two heats of commercial sheet of the composition given in Table I and identified as A and B were used in the bulk of this study. Internal-oxidation measurements were made on a third heat of material in the form of a 0.5-in.-diam bar. In order to assure homogeneity, all heats were reannealed 4 hr at 2175°F prior to sample preparation. weight-Gain Measurement. All specimens (1.5 by 0.4 by 0.03 in.) were abraded through 600 paper, electropolished, and lightly etched in an alcohol-10 pct HCl solution. An electrolyte of 150 cu cm H,O, 500 cu cm HsPO4 (85 pct conc), and 3 g CrO3 at a current density of 0.9 amp per sq cm or a solution of 10 pct HaW4 in alcohol used at 4 v and 0.3 amp per sq cm was used for electropolishing. The resultant surface exhibited a finish of 3 ± 1 p rms. Continuous weight-gain tests were made at 1600°, 1700°, 1800°, 1900°, 2000", and 2200°F on auer' type balances capable of recording a total weight change of 110 mg with an accuracy of k0.1 mg. All tests were made in air dried to a dew point of -70°F and metered into the 2-in.-diam reaction
Citation

APA: S. T. Wlodek  (1964)  Institute of Metals Division - The Oxidation of Hastelloy Alloy X

MLA: S. T. Wlodek Institute of Metals Division - The Oxidation of Hastelloy Alloy X. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1964.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account