Institute of Metals Division - The Permeability of Mo-0.5 Pct Ti to Hydrogen

The American Institute of Mining, Metallurgical, and Petroleum Engineers
D. W. Rudd D. W. Vose S. Johnson
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
250 KB
Publication Date:
Jan 1, 1962

Abstract

The permeability of Mo-0.5 pel Ti to hydrogen was investigated over a limited range of temperature and pressuire (709° to 1100°C, 1.i and 2.0 atm). The resulting permeability, p, is found to obey the The experimental data justifies the permeation mechanism as a diffusion contl-olled pnssage of Ilvdrogen atoms through the metal barrier. 1 HE permeability of metals to hydrogen has been investigated by a number of workers and their published results have been tabulated by Barrer' up to 1951. Since most of the work on the permeability has been accomplished prior to this date, the compilation is fairly complete. Mathematical discussion of the permeability process has been reported by Barrer, smithells, and more recently by zener. From these efforts several facts are observed. First, the permeability of metals to diatomic gases involves the passage through the metal of individual atoms of the permeating gas. This is evidenced by the fact that the rate of permeation is directly proportional to the square root of the gas pressure. Second, the gas permeates the lattice of the metal and not along grain boundaries. It was shown by Smithells and Ransley that the rate of permeation through single-crystal iron was the same after the iron had been recrystallized into several smaller crystals. Third, it has been observed that the rate of permeation is inversely proportional to the thickness of the metal membrane. Johnson and Larose5 verified these phenomena by measurirlg the permeation of oxygen through silver foils of various thicknesses. Similar findings were noted by Lombard6 for the system H-Ni and by Lewkonja and Baukloh7 for H-Fe. Finally, it has been determined that for a gas to permeate a metal, activated adsorption of the gas on the metal must take place. Rare gases are not adsorbed by metals, and attempts to measure permeabilities of these gases have proved futile. ~~der' found negative results on the permeability of iron to argon. Also, Baukloh and Kayser found nickel impervious to helium, neon, argon, and krypton. From what was stated above concerning the dependence of the rate on the reciprocal thickness of the metal barrier, it is seen that although adsorption is a very important process, at least in determining whether permeation will or will not ensue, it is not the rate determining process for the common metals. A case in which adsorption is of sufficient inlportance to cause abnormal behavior has been noted in the case of Inconel-hydrogen and various stainless steels.'' APPARATUS The apparatus used in this study is shown in Fig. 1. The membrane is a thin disc (A), but is an integral part of an entire membrane assembly. The entire unit is one piece, being machined from a solid ingot of metal stock. When finished, the membrane assembly is about 5 in. long. Two membrane assemblies were made; the dimensions of the membranes are given in Table I. The wall thickness is large compared to the thickness of the membrane, being on the average in the ratio of 13 to 1. There exists in this design the possibility that some gas may diffuse around the corner section of the membrane where it joins the walls of the membrane assembly, If such an effect is present, it is of a small order of magnitude, as evidenced by the agreement of the values of permeability between the two membranes under the same temperature and pressure. A thermocouple well (B) is drilled to the vicinity of the membrane. The entire membrane assembly is then encased in an Inconel jacket and mounted in a resistance furnace. The interior of the jacket is connected to an auxiliary vacuum pump and is always kept evacuated so that the membrane assembly will suffer no oxidation at the temperatures at which measurements are taken. The advantages of this configuration are: 1) there are no welds about the membrane itself, so that the chance of welding material diffusing into the membrane at elevated temperatures is remote. 2) It is possible to maintain the membrane at a constant temperature. Since the resulting permeation rate is very dependent upon temperature, it is advisable to be as free as possible from all temperature gradients. 3) It is possible to obtain reproducible results using different specimens. The only disadvantage to this configuration is the welds (at C) in the hot zone. The welding of molybdenum to the degree of per-
Citation

APA: D. W. Rudd D. W. Vose S. Johnson  (1962)  Institute of Metals Division - The Permeability of Mo-0.5 Pct Ti to Hydrogen

MLA: D. W. Rudd D. W. Vose S. Johnson Institute of Metals Division - The Permeability of Mo-0.5 Pct Ti to Hydrogen. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account