Institute of Metals Division - The Solid Solubilities of Iron and Nickel in Beryllium

The American Institute of Mining, Metallurgical, and Petroleum Engineers
S. H. Gelles R. E. Ogilvie A. R. Kaufmann
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
1902 KB
Publication Date:
Jan 1, 1960

Abstract

The solid-solubility limits of iron in beryllium were determined between 850o and 1200oC by analysis of differential type multiphase diffusion couples, using an X-ray absorption technique. The maximum value of the solubility limit was found to be 0.92 ± 0.02 at. pct (5.46 wt pet) at the eutectic temperature 1225°C. The solubilities of nickel and beryllium were determined between 900°and 1200°C by the same technique and the maximum solubility was found to be 4.93 + 0.01 at. pct (25.2 wt pet) at the eutectoid temperature, 1065°C. A previously unreported high-temperature phase which decomposes eutectoidally at 1065 °C was found to exist in the beryllium-nickel system at a composition of approximately 8 at. pct Ni (36 wt pet) by diffision-couple analysis. The presence of this phase was confirmed by thermal analysis and metallo-graphic analysis of the structure resulting from the eutectoid decomposition. G. V. Raynor1 has treated the solid solubilities of some of the elements in beryllium on the basis of the "Hume-Rothery" rules2 which have been modified to include ionic size and ionic distortion effects. It was predicted that the solubility of iron and nickel in beryllium should be slightly less than that of copper. The lowering of the solubility, according to Raynor, is due to a more unfavorable relative valency effect and an ionic size effect. Kaufmann and corzine3 have compiled data on the solubilities of elements in beryllium and have discussed them in the light of the Raynor paper. These authors feel that, because the elements having the greatest solubility in beryllium systematically fall in the Group VIII and IB Columns of the periodic table, the electronic structure greatly influences the maximum solid solubility of elements in beryllium. The solubility of iron in beryllium was determined by Teitel and cohen4 as part of the study of the beryllium-iron phase diagram. The determination was carried out by X-ray and thermal analysis and according to the phase diagram presented, the maximum solubility of iron in beryllium is 0.41 at. pct (2.5 wt pct) at 1225oC. However, it is estimated that the uncertainty in the position of the a-beryllium primary solid-solution boundary is about 0.5 at. pct (3wtpct). Losana and Goria3 in studying the beryllium-nickel phase diagram, determined the solid solubility of nickel in beryllium by thermal analysis. They found the maximum solubility to be between 1.65 and 2.65 at. pct (10 to 15 wt pct) at 1240°C. This value decreased rapidly with decreasing temperature. In determining approximate ranges of solubilities for different elements in beryllium, Kaufmann, et al,8 reported a value of between 1.3 and 1.7 at. pct (7.9 to 10.1 wt pct) for the solubility of nickel in beryllium. The value was obtained by metallographic examination of quenched alloys and lattice-parameter measurements. However, the authors also noted a single-phase structure for a 1.7 at. pct Ni alloy (10 wt pct) on cooling from the liquid. This would indicate a higher solubility range than was reported. ~isch,' in his X-ray studies of beryllium-copper, beryllium-nickel, and beryllium-iron intermetallic compounds, reports the disappearance of a second phase (Ni,Be2) in the beryllium primary solid solution at approximately 4 at. pct (20 wt pct). THEORY The analysis of concentration gradients in diffusion couples has proven to be a useful tool in determining phase equilibria.8-14 In this particular study the diffusion couples were chosen to straddle the expected composition range of the phase boundary, then heat treated at a given temperature and the concentration gradient evaluated. The composition of the phase boundary for a given temperature appears at a point of discontinuity of the composition gradient. Examples of typical phase diagrams and the concentration gradients which should be found in such systems are shown in Fig. 1. In the present work, gradients of the form of Fig. l(c) were obtained in diffusion couples made of pure beryllium and two-phase alloys of beryllium with either iron or nickel. The composition at the point where the gradient becomes discontinuous, Cs, corresponds to the solubility limit of either iron or nickel in beryllium. The analysis of the concentration gradients was carried out by an X-ra absorption method developed and applied by Ogilvie and later used by Moll13 and Hilliard.l4 It depends on the fact that the absorption of X-rays by matter is determined by the concentration and type of the various atomic species present. The relationship for the intensity, I, of a monochro-
Citation

APA: S. H. Gelles R. E. Ogilvie A. R. Kaufmann  (1960)  Institute of Metals Division - The Solid Solubilities of Iron and Nickel in Beryllium

MLA: S. H. Gelles R. E. Ogilvie A. R. Kaufmann Institute of Metals Division - The Solid Solubilities of Iron and Nickel in Beryllium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1960.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account