Institute of Metals Division - The Strain Hardening of Magnesium Oxide Single Crystals

The American Institute of Mining, Metallurgical, and Petroleum Engineers
T. H. Alden
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
1620 KB
Publication Date:
Jan 1, 1963

Abstract

Using alternating tension-compression straining, the hardening of magnesium oxide single crystals was studied up to large stresses and strains. At 0.25 pct plastic strain amplitude, the hardening curve is approximately linear with slope 25,000 psi from the shear yield stress, 7 to 8000 psi, to 35,000psi. Above this stress, the slope decreases. The strain hardening behavior of MgO is considered qualitatively similar to that of metal single crystals. The relatively high stress attainable by strain hardening is associated apparently with the high yield stress on the cross-slip system, (001) <110>. Cleavage fracture during testing is uncommon. It is argued that the centers of high internal stress at glide band intersections, at which cracks tend to nucleate, are dispersed by cyclic strain. Special features of the glide band structure produced by cyclic strain and revealed by dislocation etch pits, support this view. Strain hardened MgO has mechanical properties greatly superior to the as-received material: yield stress, greater than 100,000 psi; elongation to fracture about 1 pct. A material is said to strain harden if the yield stress increases with an increment of plastic strain. This definition is usually applied for straining done in one direction, but is also applicable when the strain direction is periodically reversed, Fig. 1. For certain metal single crystals, data are available which permit a comparison of the hardening behavior for cyclic straining and for tension straining.&apos;-4 With certain qualifications, these data show that the same processes of hardening are operative in each type of test.5 Despite this fact, the importance of the technique is not immediately evident, although tension-compression studies of the common metals appear to suggest some deficiencies in theories of strain hardening developed exclusively on the basis of tensile tests. However, a recent observation suggests that the cyclic straining method may be very useful for studying semibrittle crystals in which large plastic strains are not accessible in unidirectional testing. The observation is that zinc crystals, when strained in tension-compression at -52°C, do not fail by cleavage at low stress (-500 psi)6 as they do in tension, but harden to a limiting stress of more than 5000 psi over a total plastic strain of about 600 pct.2 An important characteristic of the behavior of zinc crystals is the high stress, relative to the yield stress, attainable by strain hardening. By comparison, the hardening of aluminum single crystals tested by an identical technique saturates at 1100 psi. This difference is best explained by the cross-slip hypothesis of dynamic recovery.7,8 In zinc, cross slip is difficult because of the high yield stress for glide on planes other than the basal plane in the < 1120 > zone. The present work was undertaken in order to test whether these methods and ideas are applicable to other materials. Magnesium oxide single crystals, in common with most crystals of the rock-salt structure, deform plastically but fail by cleavage after a small strain when tested in tension. It was hoped that larger strains would be attained using tension-compression. There is, in addition, evidence 8a which shows that slip on the probable cross system, (001) < 110>, is difficult in magnesium oxide; it may therefore be possible to attain high stresses by strain hardening. 1) EXPERIMENTAL PROCEDURE Experimental methods used in this study were based in part on techniques reported in papers of Stokes, Johnston, and Li.&apos; MgO blocks, purchased from Norton Co., were used without further annealing. Specimens were cleaved to dimensions approximately 0.125 in. sq and 1 in. in length. The gage section, formed by chemical polishing, was sprinkled with 280 mesh silicon carbide particles in order to introduce fresh dislocations. The crystals were then cemented into cylindrical aluminum adapters and clamped in an Instron testing machine. One of two alternating straining programs was used. In the first, total cross-head travel was established and increased in steps after various numbers of cycles. In the second, a capacitance gage was used to directly measure the elongation of the specimen and the crosshead was controlled so as to keep the plastic strain amplitude constant. The straining was always symmetrical with respect to the initial, zero strain condition. While both procedures produce strain hardening, only the latter permits a measure of the total plastic strain so that hardening curves may be drawn. Constant plastic strain amplitude tests were done
Citation

APA: T. H. Alden  (1963)  Institute of Metals Division - The Strain Hardening of Magnesium Oxide Single Crystals

MLA: T. H. Alden Institute of Metals Division - The Strain Hardening of Magnesium Oxide Single Crystals. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1963.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account