Institute of Metals Division - The Study of Grain Boundaries with the Electron Microscope

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. F. Radavich
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
548 KB
Publication Date:
Jan 1, 1950

Abstract

Many heats of steel of low carbon value have been known to produce brittle pieces of steel. The brittleness is believed to be due to the impurities located within the grain boundaries. Such brittle steels have been examined with an optical microscope to ascertain the nature and the amount of the impurities present at the grain boundaries. Due to the relatively low resolving power of the optical microscope, the impurities are not visible in fine detail. The writer obtained some sheet steel and proceeded to determine the location of the impurities and to show the application of the electron microscope to the study of grain boundaries. One sample was known to be capable of becoming embrittled, whereas another sample was believed to be much less susceptible to embrittlement. Treatment of Specimens The specimens were embrittled by annealing above the A3 point under mildly oxidizing conditions. One piece of ingot iron could not withstand a 90" bend, whereas another piece of ingot iron was not affected and could withstand a 90" bend. The brittle piece was then annealed at a high temperature in a hydrogen atmosphere. The annealed ingot iron was termed cured and could withstand a 90" bend very easily. The three specimens examined will be designated as brittle, good. and cured in the discussion that follows. Procedure The sizes of the specimens were as follows: one piece of brittle ingot iron-3/8 by 35 in.; one piece of good ingot iron-96 by 1/8 in.; one piece of cured ingot iron-36 by 54 in. The specimens were too small to be polished by hand and therefore were mounted in bakelite. The polishing procedure was carried out in the conventional manner with the use of 1/0 through 3/0 papers, and the final polish was done with alumina on a billiard cloth. The specimens were then etched in a 4 pct solution of picral in alcohol, and then they were examined through an optical microscope. An area was chosen that showed distinct grain boundaries, and an effort was made to keep near this area when pulling the replicas REPLICA TECHNIQIJE The replica technique used in the preparation of the replicas for examination under the electron microscope is described in Electron Metallography.' It consists essentially of the following steps: 1. Obtaining a suitably etched specimen. 2. Applying a swab of ethylene di-chloride on the surface. 3. Applying a formvar solution on the surface. 4. Placing a screen on any desired spot. 5. Breathing on the fornivar layer. 6. Applying scotch tape on the screen and film. 7. Pulling the film and the screen up with the Scotch tape. 8. Separating the screen from the Scotch tape. This replica technique is very similar to the one described by Harker and Shaefer. However, with the added step, the percentage of replicas removed is very much higher regardless of the length of the time from the etching of the specimen to the actual pulling of the replica. The replicas were then shadow cast with manganese at a filament height to replica distance ratio of 1 1/2:7. This produced a very high contrast replica for use in the electron microscope. One of the dificulties encountered with this study was the restricted area of the specimen. The width of the specimens was the same as that of the 200 mesh nickel supporting screen. In order to increase the effective area, the screens were cut down as shown in Fig 1. The arrow indicates the direction in which the replica was pulled. This operation made it possible to obtain a large percentage of good replicas. Fig 3 shows an electron micrograph of a brittle piece of ingot iron and a grain boundary that was polished mechanically. The surface is very rough probably due to the incomplete removal of the flowed layer by the picral etchant. The grain boundary does show evidence of impurities. It was decided to electropolish the specimens to obtain a much smoother surface than the one obtained by mechanical polishing. ELECTROPOLISHING The specimens were cut in half to expose the metal on the back side. The exposed metal had sufficient area to make good electrical contact and electropolishing was carried out easily. The conditions for electropolishing were 0.9 amp, 35 volts, and 25 sec. in an electrolyte composed of 850 cc of ethyl alcohol, 100 cc distilled water, and 50 cc of perchloric acid. The polished specimens were then etched in the 4 pct picral solution for a shorter time than was necessary for
Citation

APA: J. F. Radavich  (1950)  Institute of Metals Division - The Study of Grain Boundaries with the Electron Microscope

MLA: J. F. Radavich Institute of Metals Division - The Study of Grain Boundaries with the Electron Microscope. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account