Institute of Metals Division - The Surface Tension of Solid Copper - Discussion

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 79 KB
- Publication Date:
- Jan 1, 1950
Abstract
G. KUCZYNSKI* and B. H. ALEXANDER*—This paper represents a most noteworthy attempt to evaluate experimentally the surface tension of a solid metal. Because of the great importance of such measurements, any proposed method should receive the closest scrutiny before the results can be considered reliable. In regard to the experimental method, we think that the marking of the gauge length by means of tieing knots in the wire may be the cause of some of the spread in the results. Such a knot may be expected to tighten slightly, and thus increase the gauge length, when placed under stress at high temperature. Although this effect would be very small, amounting at most to only a few times the wire diameter. A fairly tight knot in a wire will decrease the wire length by about ten times the wire diameter, thus only a slight tightening of the knot would cause considerable spread in the results. Upon plotting the stress strain curves from the authors' data, the writers found that there was a fairly consistent tendency towards an S-shaped curve, instead of a straight line. Such an effect could be caused by the tightening of the knots. The writers think, however, that the experimental results are fairly reliable, but that there may be other methods of interpreting them depending upon what mechanism is assumed to be responsible for the shrinkage of the wires. The authors have assumed that the stress due to surface tension results in viscous flow. It should be made clear that it has never been demonstrated that viscous flow can occur in metal crystals even at very high temperatures. The experiments of Chalmers13 on tin, which are so frequently quoted as giving evidence of viscous flow at low stresses are by no means satisfactory. In his experiments, Chalmers found that only the initial rate of flow was approximately proportional to stress. He also found that the rate of flow varied markedly with time which, in his experiments, was less than 2 hr. Inasmuch as there is no proof of viscous flow in metals, and the authors have brought forth no conclusive evidence on this point, it may be worth while to investigate other possible mechanisms of material transport which would account for the shrinkage of the wires. The writers wish to point out that in these experiments the shrinkage of the wires can be adequately explained, according to a self diffusion mechanism. Thus, if we assume a concentration gradient for self diffusion which is a function of the radius of curvature of the wires, and assume that diffusion will occur so that the total surface area is decreased, we find the following expression for the self diffusion coefficient: where k = Boltzmann constant r0 = initial radius of the wire T = absolute temperature ? = surface energy 8 = interatomic spacing t = time e = strain at zero applied stress Eq 19 may be used to evaluate the self diffusion coefficient of copper, using the strain measurements obtained by the authors for zero stress as obtained by extrapolating their curves for 5 rail wires. By inserting a reasonable value for the surface energy (1500 ergs per cm2) we find: -66,000 D = 5 X 10e RT [20] The activation energy is of the correct order of magnitude, but the frequency coefficient is much too high, indicating that surface diffusion may be playing an important role. This discrepancy in the action constant is much smaller than the corresponding discrepancy obtained by the authors for the viscosity coefficient. The writers by no means propose that this proves that the shrinkage of the wires is due to self diffusion but we merely wish to point out that there are explanations other than that given by the authors. In this, as in any kinetic phenomena, it is necessary to study the rate of the process before anything can be said about the mechanism. The determination of surface tension given by the authors is based upon an interpretation of the data which embody the concept of viscous flow. The final proof of this concept will be obtained only after the time relationships confirming the authors' Eq 15 have been conclusively established. The rough linearity of the stress strain curves obtained by the authors for experiments run the same length of time should not be considered as proving that viscous flow is occurring. H. UDIN (authors' reply)—All of the test specimens were annealed at 1000°C for an hour or more before preliminary measurements were made. During this anneal the wires recrystallize, and the greatest part of grain growth takes place. Also, the knots sinter at the cross-over points. This does not in itself eliminate the possibility of end errors, although it greatly decreases their probable magnitude. It is still possible that some extension occurs due to creep in shear at the sintered points. If so, this effect would be quite independent of and superimposed on the normal shrinkage or extension of the wire itself. Within the precision of the experimental results, straight lines satisfy the data as well as do any other simple curves. Until data of greater precision are obtained, it is futile to discuss any possible trends away from linearity. The disagreement between Kuczynski and Alexander's Eq 19 and our Eq 18 is one of semantics and mathematics, not mechanism of flow, since Eq 18 is based on the self-diffusion concept of viscous flow. It would be interesting to learn how the mathematics leading to Eq 19 deviates from that of Eyring and of
Citation
APA:
(1950) Institute of Metals Division - The Surface Tension of Solid Copper - DiscussionMLA: Institute of Metals Division - The Surface Tension of Solid Copper - Discussion. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.