Institute of Metals Division - The Tensile Fracture of Ductile Metals

The American Institute of Mining, Metallurgical, and Petroleum Engineers
H. C. Rogers
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
9
File Size:
965 KB
Publication Date:
Jan 1, 1961

Abstract

A phenomenological study of the failure of polycry stalline ductile metals at room temperature was carried out using light and electron microscopy. Tensile fractures as well as sections of partially fractured bars of OFHC copper in particular were examined. The initiation and growth of the central crack in the neck of a tensile specimen occurs by void formation. After the formation of the central crack the f'racture may be completed in either of two ways: by further void formation or by an "allernating slip" mechanism. The first leads to a "cup-cone" failure; the second, to a "double-cup" failure. In the past decade or decade and a half there has been a great deal of emphasis on the solution of the problem of the brittle fracture of metals, particularly those which normally exhibit considerable ductility such as steel. Since the problem of the fracture of metals after large plastic strains has less immediate commercial or defense significance, there has been considerably less effort expended in describing the details of the phenomenology and determining the mechanism of this type of fracture. The present research was undertaken to increase our knowledge in this area. The problem of ductile fracture has not been neglected completely, however. Ludwik1 first found by sectioning a necked but unbroken tensile specimen of aluminum that fracture began with a large internal crack which appeared to have started in the center of the neck. Examination of the fracture indicated that the crack had propagated radially with increasing deformation until a point was reached at which the path of the fracture suddenly left this transverse plane and proceeded at approximately 45 deg to the stress axis until the surface was reached. This gives rise to the commonly observed cup-cone tensile fracture. When MacGregor2 was attempting to demonstrate the linearity of the true stress-true strain curve from necking until fracture, he found that copper was anomalous in that the stress dropped off markedly from the straight line value before fracture occurred. Radiography indicated that in the copper an internal crack was formed long before the final fracture, the stress decreasing during the growth of this crack. One of the most significant advances in the understanding of ductile fracture was the result of work by Parker, Flanigan, and Davis.3 By the use of etch-pit orientations they were able to demonstrate conclusively that the fracture surface at the bottom of the cup, although on a gross scale normal to the tensile axis, did not consist of cleavage facets as had been previously supposed by many investigators. Recently, Forscher4 has shown evidence of porosity near the tensile fracture of hydrogenated zirconium which he attributes to hydride decomposition. The workers at the Titanium Metallurgical Laboratory5 have also shown evidence of porosity in a number of the commonly used metals after heavy deformation. Many metals have relatively low ductility during creep tests at high temperature. The fractures are intercrystalline, resulting from the nucleation and growth of grain boundary voids. The work in this area has been recently reviewed by Davies and Dennison.6 It is possible that some of the observations and conclusions may have a bearing on the present study? especially since at least two studies7,' have been extended down to room temperature and below using magnesium alloys. However, since magnesium does exhibit low-temperature cleavage, these results may not be pertinent to the present one. The use of the electron microscope as an aid to the study of fractures has been extensively exploited by Crussard and coworkers.9 The examination of direct carbon replicas of the fractures of a large number of metals and alloys showed that the bulk of the fracture surface was covered with cup-like indentations of the order of 1 to 2 µ in size. These frequently had a directionality by which Crussard claims to be able to tell the direction of the crack propagation. With this rather disconnected background of information, this investigation was undertaken in the hope of presenting a unified picture of the initiation and propagation of a fracture in a ductile metal. To this end all of the techniques previously used were employed simultaneously so that there might be a good correlation of the data obtained by different techniques. EXPERIMENTAL PROCEDURE The metal which was chosen as the starting material for this investigation was OFHC copper. Of the dozen or so materials considered, it best fulfilled the requirements of commercial availability in large sizes, good ductility, relatively high melting point compared with room temperature and
Citation

APA: H. C. Rogers  (1961)  Institute of Metals Division - The Tensile Fracture of Ductile Metals

MLA: H. C. Rogers Institute of Metals Division - The Tensile Fracture of Ductile Metals. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1961.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account