Institute of Metals Division - The Yielding of Magnesium Studied with Ultrasonics

The American Institute of Mining, Metallurgical, and Petroleum Engineers
W. F. Chiao R. B. Gordon
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
9
File Size:
543 KB
Publication Date:
Jan 1, 1965

Abstract

Tile sharp-yield point found in magnesium crystals in the solulion-treated and aged condition is studied by dislocation internal-friction experiments. The results show that the sharp yield is not file to the sudden release of pinned dislocations hut is movc likely due to the rapid multiplication of an initially small number of dislocations. Recovery or the dislocation internal friction after deformation is also studied. This yecovery results from the re-pinning of dislocations by a solute, presumably nitrogen, which moves with a relatively small activation energy. SHARP-yield points, when they occur, are a striking feature of the stress-strain curve generated during a tensile test. Although commonly associated with steel, sharp yielding has been found in a variety of metallic and nonmetallic crystalline materials. In particular, sharp-yield points have been found in zinc"' and cadmium3 containing nitrogen. With this background, Geiselman and Guy4 investigated the tensile properties of magnesium single crystals containing nitrogen to see if sharp yielding also occurs in this system. They found that sharp yields did indeed occur in solution-treated and aged specimens tested at elevated temperature but were not able to give conclusive proof that the sharp yield was caused by nitrogen, a yield drop being observed even in their purest crystals. Sharp-yield points have also been found in various polycrystalline magnesium alloys.7'8 In the study of the sharp-yield phenomenon it is desired to observe the behavior of dislocations in the earliest stages of the deformation process. Internal-friction experiments are useful for this purpose because dislocation damping is sensitive to the mobility of free-dislocation segments. At low strain amplitudes the damping, A, due to the the forced vibration of dislocation segments of average length L is ? =KAL4 [1] where A is the dislocation density and K, if the applied frequency is well below the resonant frequency of the dislocation segments? is a constant for the sample under observation.5 Dislocation damping, because of the fourth-power dependence on L, is particularly sensitive to the creation of free-dislocation segments during deformation. Since sharp yielding is associated with the sudden release of pinned-dislocation segments, marked changes in the dislocation damping are expected at the yield point.6 The use of the dislocation-damping observations to help elucidate the incompletely understood mechanism of yielding in magnesium is the primary objective of the experiments reported here. PROCEDURE Many investigations have shown that very marked and rapid changes occur in the dislocation damping of of a deformed material as soon as the straining is stopped.5 It was quite essential, then, for the purpose of this investigation, to make the damping measurements during the deformation of the samples. This can only be accomplished through the use of the ultrasonic-pulse method. In this method traveling sound-wave pulses are used and, in contrast to resonating-bar methods, only the sample ends are set in vibration. Thus, the sample can be gripped along its sides in the tensile-test machine without disturbing the damping measurements. In the pulse method, the decrease in the amplitude of a sound pulse is measured as it travels back and forth through the sample. If A is the amplitude after traversing a distance x and A. is the initial amplitude, A=Aoe-ax [2] and a is called the attenuation. It is commonly measured either in units of cm-I or as db per µ sec. The observed attenuation in a metal sample is due to a number of causes. These include scattering by grain boundaries and impurity particles, thermo-elastic damping, diffraction effects, stress-induced ordering of solute atoms, and dislocation damping. The total observed attenuation in a given sample usually cannot be resolved into these various components, but changes in a due solely to changes in dislocation damping can be accurately determined, provided the experiment is arranged so that all other sources of damping are held constant. It is desired to reduce the extraneous sources of attenuation to a minimum and for this reason the experiments are done on single crystals of high purity. Magnesium crystals offer the further advantage that, when properly oriented, only a single set of slip planes is active during deformation. Crystal Preparation. The method of sample preparation is similar to that of Geiselman and Guy.4 The starting material was high-purity, sublimed magnesium rod supplied by the Dow Chemical Co. Melting under Dow 310 flux was used to reduce the nitrogen content of the starting material: the fluxing was done under an argon atmosphere and the
Citation

APA: W. F. Chiao R. B. Gordon  (1965)  Institute of Metals Division - The Yielding of Magnesium Studied with Ultrasonics

MLA: W. F. Chiao R. B. Gordon Institute of Metals Division - The Yielding of Magnesium Studied with Ultrasonics. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account