Institute of Metals Division - The Zirconium-Hafnium-Hydrogen System at Pressures Less Than 1 Atm: Part I – A Thermochemical Study

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 9
- File Size:
- 576 KB
- Publication Date:
- Jan 1, 1965
Abstract
The Zv-Hf-H ternary system was studied between 500° and 900°C at pressures less than 1 atm of hydrogen gas between 1 and 60 at. pct H. A new and unique microgravimentric apparatus was used. Cizanges of slope on pressure-hydrogen composition isothernis delineated phase boundaries. These boundaries separatecl the three regions, a, 0, and y—so designated to correspond to the regions of the Zr-H binary system—from the multiphased areas between them. A eutectoidal decomposition was found with the ß region phase or phases decornposing into a lamellar product on quenching to rool ter,zperatuve. Reproducible decomposition-pressure hysteresis occilrved lnainly at lower hydrogen cornpositions and at lower temperatures across multiplzase vegions between a and 0 and a and y. Tire effects of hqfniur7z on the hydriding charactevistics of zirconiurrz weYe as follows: 1) stabilization of the a and y vegions while destabilizing the 0 region; 2) a/?preciable elevation of the decomposition pressrkres in the multiphase region between the a and /3 field; 3) ~nouenzent of the eutectoid reaction to high te~nperatures; 4) reduction in the total qiiantity of hydrogen absorbed under one atmospheve of Hz p7-essure; and 5) introduction of a split deconzposilion at the eiitectoiclal poinl in pa?? of the ternavy. Assuru~ptions based on an ir-2terstitial vandonl-solulion rtioclel 0.f hydrogen in metals slzowed that the bindit~g energy between solute sites prednnzinatecl at low /i?!dvogen concentrations. However, at high hydrogen contents the entropy was the predorninatlt factor in determining the stability of the Zr-Hf-H al1o.s. This was interpreted to mean a scarcity of filrtlzer itltevslilinl solute sites caused by hydrogen-hydvogen intet-actions in the metal lattice. INTEREST in the reaction of hydrogen with metals has increased in the past few years for the following reasons: 1) the formation or use of high hydrogen potential environments in nuclear reactors; 2) the reaction of hydrogen with alloys in nuclear reactors with the accompanying deleterious effects on the mechanical and corrosion properties; 3) the theoretical implications of thermodynamic data on the theory and rules of alloy formation in the metal-hydrogen systems; 4) the use of hydrogen-containing fuels in rocket engines; 5) the need for a process of making fine metal powders of high-melting reactive metals; and 6) the beneficial impregnation of superconducting alloys with hydrogen. In nuclear pressurized-water reactors, the problem exists of limiting the hydrogen pickup of zirconium alloys which are utilized as fuel cladding, heat shields, and support members. In general, zirconium alloys have good mechanical and corrosion-resistant properties in high-temperature water. However, hydrogen is absorbed from the corrosion reaction between metal and water, greatly accelerating the formation of the corrosion product ZrOz as well as mechanically embrittling the underlying metal. In addition, recent observations1 at zirconium to hafnium welds showed that secondary elements in zirconium can have an appreciable, and somewhat unexpected, effect on hydrogen absorption. This paper lists the thermochemical data in the range 500" to 900°C for the equilibrium reaction of four high-purity Zr-Hf alloys with hydrogen. Phase boundaries and thermodynamic functions are determined while the structural data will be presented in a future paper. In general, the Zr-Hf-H system approximates the well-known, eutectoidal, Zr-H diagram2,3 with modifications introduced through the behavior of hafnium.4,5 The Hf-H system,' published while this work was in progress, provided a consistent trend with the Zr-Hf-H data. PREPARATION OF Zr-Hf ALLOYS Table I presents a complete flow chart of the preparation procedure. The zirconium and hafnium crystal bars were completely immersed in high-purity kerosene and slowly cut into thin wafers. Wafers were then cold-sheared into approximately 1-g pieces, thoroughly cleaned, weighed, and inserted into the furnace. The alloys, B-2, B-4, B-6, and B-8, were then nonconsumable arc-melted under 500 mm of purified argon. Additional purification of the argon was accomplished by melting a large titanium button each time an alloy was re-melted or a different alloy melted. Each alloy button, which weighed 25 g, was remelted four times in an approach to complete homogeneity. Material losses were less than 0.02 wt pct. Alloy buttons were alternately cold-rolled and vacuum-annealed into 10- and 20-mil sheets. Table I1 gives the composition of the four alloys used. Very little elemental segregation existed be-
Citation
APA:
(1965) Institute of Metals Division - The Zirconium-Hafnium-Hydrogen System at Pressures Less Than 1 Atm: Part I – A Thermochemical StudyMLA: Institute of Metals Division - The Zirconium-Hafnium-Hydrogen System at Pressures Less Than 1 Atm: Part I – A Thermochemical Study. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.