Institute of Metals Division - Thermodynamic Activities of Solid Nickel-Aluminum Alloys

The American Institute of Mining, Metallurgical, and Petroleum Engineers
A. Steiner K. L. Komarek
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
301 KB
Publication Date:
Jan 1, 1964

Abstract

Activities of aluminum in solid Ni-A1 alloys have been determined between 20 and 60 at. pet Al and 1200" and 1400°K by an isopiestic method in which nickel specimens, heated in a temperature gradient, are equilibrated with aluminum vabor in a closed all-alumina system. The activity of aluminum shows a strong negative deviation from Raoult's law at low concentrations but increases by three orders of magnitude within the ß(NiAl) phase. The partial molar enthalpy and entropy of mixing are negative. Using Wagner and Schottky's theory of ordered compounds, a degree of disorder of 4 x 10 -4 for NiAl and 1.25 X 10-2 for FeAl has been calculated THE Ni-A1 system has been studied by a great number of investigators, and the results, as far as the phase diagram is concerned, have been compiled by Hansen.1 The phase boundaries from 0 to 50 at. pet Ni are well-established. At higher nickel contents the boundaries are still in dispute and an additional phase, A12Ni3, has been reported.' The phase diagram is dominated by a very stable high-melting compound, NiA1, with a relatively wide range of homogeneity. Heats of formation of solid alloys have been determined calorimetrically by Oelsen and Middel3 from 20 to 95 at. pet Ni and by Kubaschewski4 from 25 to 80 at. pet Ni. According to the most recent compilation5 no other thermodynamic investigations have been reported for the Ni-A1 system. Due to the corrosive nature and the low vapor pressure of aluminum, a method has been employed for determining activities of aluminum which was previously developed for the Fe-A1 system.= Nickel specimens, heated in a closed evacuated alumina system in a temperature gradient, were equilibrated with aluminum vapor from a source within the system kept at constant temperature. After complete equilibration the specimens were analyzed and activities calculated from the known vapor pressure of aluminum. APPARATUS AND EXPERIMENTAL PROCEDURE Materials. The nickel specimens were made from wafers of electrolytic nickel (International Nickel Corp.) of 99.99 pet purity which were rolled to a 0.001-in.-thick foil by Driver-Harris Co. and to a 0.005-in.-thick sheet in our laboratory. The aluminum (Aluminum Corp. of America) had a purity of 99.99+ pct. The alumina tubes and crucibles were made of impervious recrystallized alumina with an alumina content of 99.7 pet (Triangle RR, Mor-ganite Inc.). Experimental Procedure. Annular specimens were punched from the sheet, the punching burrs removed, and the specimens degreased in carbon tetrachloride and acetone and weighed on a micro-balance to within an accuracy of ±0.01 mg. The specimens were positioned with alumina spacers along an alumina tube, and the positions measured. Aluminum metal was machined into cylindrical shape, and placed into an alumina crucible. The tube with the specimens was then inserted into a hole drilled into the aluminum metal. An alumina tube with its closed end at the top was slipped over the specimens so that its lower end fitted snugly into the alumina crucible. The assembled reaction tube was inserted into a mullite tube with a water-cooled brass head which had an opening for a quartz thermocouple protection tube and a metal-to-glass connection to a conventional vacuum system. A Pt-Pt 10 pet Rh thermocouple could be raised and lowered in the quartz tube which was placed along the outside of the alumina reaction tube. The mullite tube was heated by two separately controlled resistance-tube furnaces so that in the experimental temperature range an over-all temperature gradient of approximately 150o to 250°C could be imposed on the reaction tube. The position of the mullite tube was adjusted so that the surface of the aluminum metal was always at the temperature minimum. The reaction tube was thoroughly evacuated before and during slowly heating the assembly up to the melting point of aluminum. A pressure of less than 2 µ (Hg) was maintained during an experiment. Once the aluminum had melted, it isolated the contents of the alumina tube from the surroundings. Several times during an experiment the temperature gradient was carefully measured. An experiment lasted from 3 to 6 weeks and it was terminated by air cooling the evacuated mullite tube. For further details of the experimental procedure the paper on the Fe-A1 system6 should be consulted.
Citation

APA: A. Steiner K. L. Komarek  (1964)  Institute of Metals Division - Thermodynamic Activities of Solid Nickel-Aluminum Alloys

MLA: A. Steiner K. L. Komarek Institute of Metals Division - Thermodynamic Activities of Solid Nickel-Aluminum Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1964.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account