Institute of Metals Division - Twinning in Columbium

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 702 KB
- Publication Date:
- Jan 1, 1962
Abstract
Mechanical twins were produced in electron-beam melted columbium by high-speed impact at room temperature and by slow or fast compression at -196°C. The composition plane of the twins was { 112} and the shear direction was <111>. Notches in the twin bands often corresponded to traces of {110) of the matrix and appeared to be untwinned regions. Markings within the twin bands were interpreted as resulting from {110} slip in the twins. THERE has been much work in recent years concerning plastic deformation by glide, and the dislocation theory relating to glide has reached a relatively high degree of development. On the other hand, there have been fewer studies of deformation by mechanical twinning, and understanding of this process is far from satisfactory. This method of deformation is of interest for at least two reasons. First, it provides a mechanism in addition to glide for the relief of stresses, and, in the bcc and hexagonal close-packed metals may result in significant amounts of plastic flow. Secondly, there is the possibility that twins may act as barriers for dislocation movement, resulting in pile-ups which could nucleate cracks. As might be expected, the bulk of the literature on mechanical twinning in the bcc metals is concerned with iron. A good summary of the work done prior to 1954 is contained in the book by all.' Recently the refractory bcc metals have become increasingly important. Limited studies have shown that tantalum,2,3 molybdenum,4,5 vanadium,6,7 tungsten,' and columbium9-11 deform by mechanical twinning under some conditions. Alloys of molybdenum with rhenium and tungsten with rhenium show extensive deformation by twinning at room temperature.I2-l4 Most of these studies have dealt primarily with mechanical properties at low temperatures or have shown the existence of twins, and there is only a small amount of information concerning the conditions under which they form. The subject of the present paper is the formation of twins under stress in columbium with a consideration of their morphology. EXPERIMENTAL PROCEDURE The material used for these studies was taken from an ingot of columbium which had been melted twice by the electron-be am-method. The analysis of the ingot was (in ppm): B < 1, C = 10, Fe < 100, The cast ingot contained very large grains, and it was possible to obtain single-crystal prisms which measured from ¼ to 3/4 in. on a side. A few experiments were conducted on polycrystalline plate which was prepared by rolling material from the same ingot at room temperature and annealing at 1000 in a dynamic vacuum of 10-6 mm Hg. This gave a plate in which the grains had an average diameter of 3 mm. After the specimens were cut from the ingot, the six faces were metallographically polished and elec-tropolished to remove all traces of cold work. Most of the observations were made on the surfaces of the deformed specirllens without further treatment. Occasionally, etching after deformation was desirable. In these cases, an etchant of the composition 50 parts H2O, 5 parts HNO3 25 parts HF, and 10 parts H2SO4 was found to delineate the twins very well. Unless considerable care was taken to ensure the removal of all disturbed metal left by the mechanical polishing, etching failed to reveal many of the features discussed in this; paper. The specimen's were deformed either by impact or slow compression at 77°K (liquid-nitrogen coolant), 198°K (dry ice and acetone coolant), and 298°K. The impact load was delivered by a hammer except in one case where the load was delivered by a bullet. Slow compression was carried out on a hydraulic testing machine equipped with a chamber to hold the coolant. EXPERIMENTAL RESULTS It has been generally believed that the conditions favoring the formation of deformation twins are large grains, low temperature, and impact loading. In fact, Barrett and Bakish2 found twins in tantalum only after impact deformation at 77°K, and Adams, Roberts, and Smallman10 observed twins in columbium only at 20 For these reasons, the initial experiments of this study used impact loading. Hammer blows caused many bands resembling twins in single crystals a.t 77" but not at 198°K. Only a few slip lines were observed on any of the single-crystal specimens of this study—essentially all the deformation occurred by twinning. The appearance of the twins on the as-deformed surface is shown in Fig. 1. Although both Figs. 1(a) and l(b) are photomicrographs of twins taken at the same magnification and from the same crystal, they are startlingly different in appearance. Fig. 1(a) was taken from the crystal face approximately perpendicular to the shear direction, whereas Fig. 1(b) was taken from
Citation
APA:
(1962) Institute of Metals Division - Twinning in ColumbiumMLA: Institute of Metals Division - Twinning in Columbium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.