Institute of Metals Division - Vanadium-Zirconium Alloy System (Discussion p. 1266)

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. T. Williams
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
669 KB
Publication Date:
Jan 1, 1956

Abstract

The equilibria in the V-Zr alloy system were investigated by solidus temperature determinations, thermal analysis, dilatometry, electrical resistance measurements, microscopic examination, and X-ray diffraction analysis. There is a eutectic reaction at 1230°C between a compound, V2Zr, and a solid solution containing 10 pct V in ß zirconium. V2Zr decomposes at 1300°C into liquid and a solid solution containing about 10 pct Zr in vanadium. The eutectic composition is probably about 30 pct V. A eutectoid reaction between V2 Zr and a zirconium takes place at 777°C at a very high rate. The eutectoid composition is 5 wt pct V. The limit of solubility of zirconium in vanadium was estimated to be 5 pct at 600°C. No attempt was made to determine the liquidus for the system. THE recent availability of large quantities of high purity zirconium has stimulated the study of zirconium binary systems. The equilibrium diagram for the V-Zr system has received little attention, however. Wallbauml appears to have made the first report concerning the equilibria in these alloys. He reported the existence of a compound, V2Zr, having the MgZn2 ((214) type of structure with a, = 5.277 kX and c° = 8.647 kX. Anderson, Hayes, Roberson, and Kroll2 made a survey of some potentially useful zirconium binary alloys and found that zirconium probably dissolves a small amount of vanadium. They reported the probable existence of a compound between the two elements and suggested that the zirconium-rich solid solution undergoes a eutectic reaction with this compound. Pfeil," in a critical review of the existing information, estimated that the solubility of vanadium in zirconium is less than 4.7 pct and probably less than 1.8 pct. Rostoker and Yamamoto' proposed a partial diagram for the V-Zr system in a survey paper on vanadium binary alloys. Their diagram indicates the compound, V,Zr, a eutectic reaction at 1360°C, a peritectic reaction at 1740°C, and a limit of solubility of zirconium in vanadium of about 3 pct. They obtained no information on the equilibria in the zirconium-rich alloys. In view of the potential utility of the V-Zr alloys and the incomplete knowledge concerning the equilibria in the system, an attempt was made to establish the constitutional diagram. Preparation of the Alloys Raw Materials: The vanadium for making up these alloys came from the Electro Metallurgical Corp. Zirconium came from two sources. In the beginning of the investigation, sponge zirconium from the Bureau of Mines was used in making some of the alloys. Later, iodide metal made at the Westinghouse Atomic Power Development Laboratories became available. This material was used in the preparation of all the dilatometric and resistance specimens and about two-thirds of the solidus temperature specimens. A typical manufacturer's analysis of the vanadium is shown in Table I. No other analysis of the vanadium was made. The metal contained a dispersed second phase and did not have a sharp melting point. Typical results of spectrographic analysis of the Westinghouse zirconium are shown in Table 11. These data indicate a very high purity. The Bureau of Mines sponge metal was probably less pure but had good ductility. Melting: All of the alloys used in the investigation were made by melting pieces of vanadium and zirconium together in a dc electric arc furnace similar to those of Geach and Summers-Smith, craighead, Simmons, and Eastwood," and others. Melting was done in an atmosphere of helium scavenged of residual air by the preliminary melting of a separate charge of zirconium. Each ingot was turned over and melted at least three more times before removal from the furnace to aid in the attainment of homogeneity. Alloys prepared for use in the investigation are listed with the results of solidus determinations in Table III with the exception of the following compositions upon which no solidus determinations were made: 0.29, 0.54, 4.57, and 5.55 pct V. Analysis: The weight of each ingot made from iodide zirconium was within 0.1 g of the total weight of the initial charge, about 90 g. Since each component of each charge was weighed to the nearest 20 mg for amounts less than 10 g and to the nearest 0.1 g otherwise, the gross composition of an ingot could be calculated accurately. Chemical analysis for the vanadium content of several alloys agreed
Citation

APA: J. T. Williams  (1956)  Institute of Metals Division - Vanadium-Zirconium Alloy System (Discussion p. 1266)

MLA: J. T. Williams Institute of Metals Division - Vanadium-Zirconium Alloy System (Discussion p. 1266). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1956.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account