Institute of Metals Division - Yield Point and Easy Glide in Silver Single Crystals

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 1681 KB
- Publication Date:
- Jan 1, 1962
Abstract
Experiments on latent hardening were peyformed by compressing single crystals along a direction perpendicular to the tension axis. The slope and length of easy glide in the tension test were found to depend only on prior deformation in the same slip plane. Prior deformation on a different slip plane changes the stress level of the resulting stress-strain curve. The yield points appearing upon reloading after prior extension and unloading were related to the end of easy glide. SEVERAL researchers have studied the latent hardening due to deformation of a crystal by slip on a slip System after prior deformation. These experiments can be divided into those in which the prior deformation was on the same plane as the subsequent and those in which the two deformation processes were in different planes. In the former category are the experiments of Buckley and Entwistle,1 Parker and washburn,2 and Haasen and Kelly.3 The latter case has not been studied systematically; it was the main purpose of this investigation to produce this type of latent hardening and explain the results in terms of the existing theories of work hardening. In general, tension producing slip on a certain slip system can be preceded by tension, transverse compression or longitudinal compression, each with predictable dislocation movement and intersection. The intersection of dislocations can lead to glissile or sessile jogs, Cottrell-Lomer locks and other sessile dislocations. The effect on the stress-strain curve could depend on which combination of the former mechanisms is operating. Haasen and Kelly3 have studied the yield points which occur in aluminum and nickel single crystals upon reloading after prior unloading in a tension experiment. They attributed this effect to the anchoring of dislocations occurring during unloading. As Cottrell and stokes4 have shown that dislocations cutting through the "forest" could only lead to reversible changes, they attributed the anchoring to the formation of sessile dislocations during unloading. However, different kinds of sessile dislocations could be formed during unloading, and it was the purpose of this experiment to determine whether Cottrell-Lomer locks are responsible for the yield effect and for the end of easy glide. The case where a longitudinal compression is followed by tension along the same axis is commonly referred to as a Bauschinger test. This type of effect was studied by Buckley and Entwistle1 on aluminum single crystals and by Parker and washburn2 on zinc single crystals. In such a test, the tension and the compression activate the same slip plane with opposite slip directions. The use of sideways compression in the present experiments permits the activation of different types of slip systems and the study of their effect on the easy glide region and on the transition between the elastic and easy glide region. The theory of seeger5 for the flow stress in fee materials is applied to explain the latent hardening. EXPERTMENTAL PROCEDURE All the single crystals used in this investigation had an axial orientation close to <210>, called the "0.5" orientation. This is the orientation for which the tensile axis is 45 deg from both the slip plane and the slip direction. The single crystals were grown from the melt under a helium atmosphere using milled graphite boats,=at a rate of 8.6 mm per min. The silver used in the experiment was 99.98 pct pure. The single crystals had a square cross section about 0.9 by 0.9 cm and a length of 14 cm. The orientation of the specimen was determined within ±2 deg by the Laue back-reflection method. The specimens were annealed at 940' ± 2°C in a helium atmosphere for 24 hr and then furnace cooled over a period of 7 hr. The specimens were electropolished in a solution of 9 pct KCN in water. The specimens were tested in a soft-type tensile machine (the load is prescribed) up to 3 pct strain. The stress was increased continuously at approximately 30 g per mm2 per min. The strain was measured over a 5 cm gage length with a mechanical extensometer employing an optical lever. The strain and stress were measured with accuracies of i 2 X 10-5 and ± 2 g per mm2, respectively. The remainder of the stress-strain curve up to 20 pct strain was obtained in a hard-type tensile machine (the strain rate is prescribed). The strain and the stress were measured in that machine with an accuracy of ±2 pct. The compression tests were performed in the hard-type machine using accurately machined steel blocks without lubrication. The blocks were used so as to apply a uniform compression over a length of 13 cm. The strains were measured on the hard-type machine and with a micrometer.
Citation
APA:
(1962) Institute of Metals Division - Yield Point and Easy Glide in Silver Single CrystalsMLA: Institute of Metals Division - Yield Point and Easy Glide in Silver Single Crystals. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.