Institute of Metals Division - Zirconium-Columbium Diagram

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 626 KB
- Publication Date:
- Jan 1, 1956
Abstract
The constitutional diagram presented herein is relatively simple. Complete mutual solid solubility exists for an interval below the solidus line, a continuous curve with a flat minimum near 22 pct Cb and 1740°C. Upon cooling, the solid solution breaks up, except at the columbium-rich side, from two causes: zirconium-rich alloys transform under the influence of the ß-a transformation in zirconium; alloys of intermediate composition decompose into two solid solutions below 1000°C. The combined effect is the formation of a eutectoid at a temperature of 610°C and a composition of 17.5 pct Cb. The eutectoid horizontal extends from 6.5 to 87.0 pct Cb. Some age hardening effects have been observed in the zirconium-rich alloys but the positions of the solvus lines remain uncertain. IN recent years, zirconium has been produced in much larger quantities than were available previously. Correspondingly, the incentive for studying its alloy systems has increased, as the number of recent publications on alloy systems testifies. However, only a partial diagram of the Zr-Cb system has been published and relatively few references have been made to alloys of the two metals. Hodge' investigated the Zr-Cb system up to about 25 pct Cb. His data on melting points were not sufficiently numerous to distinguish with certainty between the alternatives of a narrow eutec-tic horizontal and a wide flat minimum in the solidus curve. Although Hodge considered his results on transformations in the solid state to be only tentative, he suggested that the eutectoid in the zirconium-rich alloys lay at about 625 °C and 10 pct Cb and estimated that the solubility of colum-bium in zirconium at 625 °C was near 6 pct. According to Simcoe and Mudge,2 less than 0.5 pct Cb is soluble in zirconium at 800°C. These authors observed an increased strength in both the 0.5 and I pct Cb alloys made with hafnium-containing zirconium. According to Keeler,3 the strength of zirconium is increased by addition of columbium to a content of at least 3 pct. Keeler' also observed a maximum in hardness at about 10 atomic pct Cb and commented on the brittleness of alloys of this composition. Anderson, Hayes, Rober-son, and Kroll5 investigated the tensile properties of Zr-Cb alloys containing 5.1 and 12.9 pct Cb at room temperature and at 343°C. The 12.9 pct alloy had a high tensile strength at room temperature but also a low percentage of elongation. All alloys had high elongation at 343 °C. Littona measured strength and elongation values of annealed alloys containing up to 27.5 pct Cb and found low elongation values for all of the alloys of high columbium content. Some observations on the resistance of Zr-Cb alloys to corrosion in water at high temperature have been published by Lustman, De Paul, Glatter, and Thomas' who found that additions of columbium up to 1 pct had only a minor effect on the corrosion resistance of zirconium. Preparation of the Alloys Raw Material: Zirconium of a relatively good grade was available for making the alloys. It was obtained as scrap pieces that had been left over from an operation that included production by the iodide process, melting under a protecting atmosphere, and fabrication to plates. The individual pieces had hardness values of 24 to 32 Ra and a typical analysis is shown in Table I. The columbium also was scrap trimmed from sheets. It was furnished by the Fansteel Metallurgical Corp. and had a high ductility but its analysis was known only approximately. The metal probably contained about 0.5 pct Ta, perhaps 0.25 pct C, and a few hundredths percent each of iron, silicon, and titanium. Melting: The alloys were melted in a tungsten-electrode copper-crucible arc furnace similar to units that have been described recently in the metallurgical journals.'.' The crucible of this furnace is provided with a cavity in which a getter charge can be melted before the melting of the alloy charges. Hardness measurements on the ingots indicate that the getter charge takes up a considerable fraction of the oxygen and nitrogen from the helium atmosphere of the furnace. The alloys used in the investigation are given with their intended compositions, hardness, and melting points in Table 11. Fabrication: All alloys of the Zr-Cb system appear to be amenable to fabrication. At least, all of the compositions listed in Table II could be reduced to wires in a rotary swaging machine. The starting material was either slabs cut from ingots and ground by hand to rough cylinders or narrow strips trimmed from sheets made by cold rolling slabs. However, not all of the alloys could be fabricated satisfactorily by the same method. From 0 to 4 pct Cb and from 20 to 30 pct Cb or more, the alloys could be swaged cold from ¼ in. cylinders to 0.80 mm wires with only one intermediate annealing, sometimes with none. From 40 to 90 pct Cb, the alloys were difficult to swage either hot or cold but could
Citation
APA:
(1956) Institute of Metals Division - Zirconium-Columbium DiagramMLA: Institute of Metals Division - Zirconium-Columbium Diagram. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1956.