Instrumentation For Mine Safety: Fire And Smoke Problems And Solutions

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 17
- File Size:
- 1023 KB
- Publication Date:
- Jan 1, 1982
Abstract
INTRODUCTION Underground fires continue to be one of the most serious hazards to life and property in the mining industry. Although underground mines are analogous to high-rise buildings where persons are isolated from immediate escape or rescue, application of technology to locate and control fire hazards while still in their controllable state is slow to be implemented in underground mines. Even in large surface structures such as hotels, often only fire protection systems which meet minimal laws are implemented due to the high cost of adding extensive extinguishing systems, isolation barriers, alternate ventilation, escape routes and alarm systems. Incomplete and ineffective protection occasionally is evidenced where costs would not seem to be a factor, such as the $211 million MGM Grand Hotel fire November 21, 19801. Paramount in increasing fire safety and decreasing the threat of serious fire is early warning followed by proper decision analysis to perform the correct action. However, very complex fire situations can be produced in structures such as high-rise buildings and underground mines simply because of the distances between the numerous fire-potential locations and fire safe areas. Other complexities arise when normal activities occur that emit products of combustion signaling a fire condition to a sensitive fire/smoke sensor. For example, the operation of diesel equipment or the performance of regular blasting can produce combustion products that reach the sensitive alarm points of many sensors2. Smoke detectors for surface installations provide fire warning when occupants are at a distant location or when sleeping, thus greatly reducing injuries and property damage. However, when installed in the harsh environments of underground mines, fire and smoke detection equipment soon becomes inoperative, unreliable, or requires excessive maintenance. The U.S. Bureau of Mines has performed many studies and tests to improve fire and smoke protection for underground mine workers3. This paper describes several USBM safety programs which included in-mine testing with mine fire and smoke sensors, telemetry and instrumentation to develop recommendations for improving mine fire safety. It is hoped that the technology developed during these programs can be added to other programs to provide the mining industry with the necessary fire safety facts. By recognizing fire potentials and being provided with cost-effective, proven components that will perform reliably under the poor environmental conditions of mining, mine operators can provide protection for their working life and property equal to that which they provide for themselves and their families at home. The basis of this report is two USBM programs for fire protection in metal and nonmetal mines4,5 and one coal program6. The data was collected beginning in May 1974 and continuing through the present with underground tests of a South African fire system installed at Magma Mine in Superior, Arizona, and a computer-assisted, experimental system at Peabody Coal Mine in Pawnee, Illinois. The conduct of each program was as follows: • Define the problem and its magnitude in the industry • Develop concepts to solve or diminish the problem • Review available hardware or systems approaches to fit the concepts • Install and demonstrate the performance of a prototype system through fire tests in an operating mine. MINE FIRE FACTS Whether in coal or metal and nonmetal mines, the potential severity of fire hazard is directly related to location. As shown in Figure 1, fire in intake air at zones A, B, C or D can cause contamined air to route throughout the mine quickly if not detected, isolated or rerouted. Causes and location of former metal and nonmetal fires are represented in Table 1; the cause and location of fatalities and injuries is shown in Table 2. Coal-related fires and their impact on deaths and injuries are graphed in Figure 2; their locations are described in Table 37. Significantly the table shows that the hazard to personnel was three times greater for fires occurring in shaft or slope areas, and the percentage of deaths and injuries was four times that of other areas. Number of Persons Affected A 129-mine sample indicated that from 8 to 479 employees per shift work in underground metal and nonmetal mines, and that deeper mines have larger populations, as shown in Figure 3. Coal mining relates similar employment, and a 16-state sample of 670 mines employing at least 25 persons shows the distribution in Figure 4. Drift mines accounted for 58 percent of the sample but employ only 45 percent of the underground workers.
Citation
APA:
(1982) Instrumentation For Mine Safety: Fire And Smoke Problems And SolutionsMLA: Instrumentation For Mine Safety: Fire And Smoke Problems And Solutions. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1982.