Iron and Steel Division - A Thermochemical Model of the Blast Furnace

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 2839 KB
- Publication Date:
- Jan 1, 1962
Abstract
A method of calculating the changes in blast-furnace performance brought about by burden and/or blast modifications is presented. Essentially the method consists of three simultaneous equutions derived from materials and heat balances. These equations can be used not only to evaluate quantitatively the effect of changes in process operating variables on furnace performance, but also to provide a useful means of evaluating changes in process variables which cannot be measured directly. It has been customary for a number of years to use simple heat and materials balances as a basis for assessing blast-furnace practice. A good example of the method used to set up these balances is that proposed by Joseph and Neustatter.1 This approach to process assessment has limited utility, however, in that it cannot be used to predict the furnace coke rate or production under new operating conditions. Using an approach based on multiple correlation of blast-furnace variables, R V. Flint2 has developed an equation which may be used to predict the change in coke rate that will result from some changes in operating conditions with a reasonable degree of accuracy. Although this equation has useful applications in production planning, it cannot be used to study the relationships between the operating variables and the fundamental thermochemi-cal characteristics of the process. In attempting to analyze the blast-furnace process quantitatively, the idea of dividing the furnace into zones3 may at first appear attractive. In our present state of knowledge, however, it is not possible to define with any accuracy the physical limits of such zones in relationship to their temperatures or to the reactions which may occur in them. Although its application is restricted, the zonal approach to blast-furnace analysis is useful in some instances. For example, the change in the calculated flame temperature in the "combustion zone" caused by injecting steam constitutes information which is helpful in understanding why the addition of steam to the blast is best accompanied by an increase in blast temperature. The zonal approach cannot, at the present time, be used to establish the relationships between process variables and process performance if the whole process rather than part of it is to be considered. One of the earliest approaches to the problem of relating blast-furnace operating variables to pro- duction and coke rate was that developed by Marshall.4 Essentially Marshall's work showed that it was possible to estimate the performance of a furnace by solving three simultaneous equations which consisted of rudimentary carbon and heat balances plus a further equation relating the production, wind rate, and the carbon burned at the tuyeres. Although these equations did not include all of the chemical and thermal variables of the process, their derivation and application seems to be the earliest attempt which achieved any success in relating prior furnace operating data to the calculation of furnace performance under different blast conditions. Work carried out in Germany has been directed mainly towards prediction of coke rates using material and thermal balances rather than statistical methods. wesemann5 used prior furnace operating data as part of the basis for predicting the change in coke rate accompanying a change in burden composition. This author employed a method of successive approximations to estimate the secondary changes in slag volume and stone rate brought about by the change in coke rate. The most recent analysis, which seems to have been developed concurrently with the thermochemical model presented in this paper, has been described by Georgen.6 This author has succeeded in improving on Wesemann's approach by expressing the total changes in the slag volume and stone rate in terms of the change in coke rate itself. This is accomplished in a manner similar to that used in the thermochemical model described in this paper. Although Georgen makes use of a calculated furnace heat loss, he does not relate the heat loss per unit of hot metal to the production rate as is done in the present work. Georgen's approach may be used to calculate the changes in materials requirements accompanying changes in furnace operation; it cannot be used to assess the resulting changes in production. The fact that blast-furnace behavior can be interpreted by consideration of the heat requirements of the process was demonstrated by Dancy, Sadler, and Lander.7 In the analysis of blast-furnace operation with oxygen and steam injection these authors showed that it was possible to account for the changes in production and coke rate
Citation
APA:
(1962) Iron and Steel Division - A Thermochemical Model of the Blast FurnaceMLA: Iron and Steel Division - A Thermochemical Model of the Blast Furnace. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.