Iron and Steel Division - Decarburization in Iron-Carbon System by Oxygen Top Blowing

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 376 KB
- Publication Date:
- Jan 1, 1964
Abstract
Decarburization in the Fe-C system by oxygen top blowing has been studied in laboratory -scale experiments. It is shown that equilibrium models fail to explain or predict either the course of refining or endpoint conditions, giving results which either are incompatible with the chemistry of the system or do not satisfy material balance requirements. Also the path of decarburization was found to vary even for heats made under apparently identica1 conditions. A promising approach to analyzing the decarburization results is to relate oxygen efficiency fm carbon removal to bath carbon content. This relationship for Fe-C heats shows the same range of oxygen efficiencies as is obtained in pilot-plant and commercial heats using hot metal-scrap charges. This implies that oxygen transfer is primarily controlled by the decarburization reaction itself, independent of other refining reactions. Therefore, it should be possible to study separately decarburization and slag-metal reactions. DECARBURIZATION is probably the most important reaction in steelmaking. Not only is it a main reaction in the refining of iron to steel but it also provides the stirring action in the bath necessary for the diffusion processes to proceed at reasonable rates so as to make a steelmaking process practical. Kinetics of decarburization in the open-hearth process has been a subject of investigation for many years.'-B It is generally accepted that at steelmaking temperatures the rate of homogeneous C-0 reaction is extremely high and cannot constitute a rate-controlling step. Diffusion of oxygen through a boundary film in the metal phase has been suggested by arken' as rate-determining. Recently, Larsen and sordah16 concluded from experiments in a laboratory furnace that, with oxygen supplied from air or combustion gases, the rate of "steady-state" carbon boil is controlled essentially by a diffusion process of O2, Co2, or H2O through a film of nitrogen above the slag surface. Displacing this diffusion film by a stream of nearly pure oxygen produced a ten-fold increase in the rate of carbon boil with the rates of slag-metal oxygen transfer, bubble nucle-ation, and other steps all apparently able to keep pace. In the top-blown basic oxygen process, however, the transport of oxygen takes a more direct route. and the state of bath agitation is much more turbulent than in the open-hearth process. In addition, direct contact of the gas with the metal phase provides opportunity for direct oxidation of carbon. It is likely that the rate-limiting factor for the decarburization reaction will be different. However, only a few descriptive discussions of the subject have been reported in the literature.10-l2 Studies of the decarburization kinetics based on plant or pilot-plant data are necessarily complicated and are influenced by other refining reactions which occur simultaneously. In order to investigate the mechanism of decarburization, experiments have been conducted in which carbon-saturated iron melts were top-blown with pure oxygen over a range of conditions. It is hoped that this study will form a foundation on which a more basic understanding of this important reaction may be built. EXPERIMENTS One group of blowing experiments was made in a standard 200-lb induction furnace and another group in a 500-lb induction furnace. The furnaces were modified to the general shape of a basic oxygen furnace by adding a rammed refractory cone section to the regular crucible body. Crucible and cone were of high MgO (95 pct) material. A water-cooled lance, 1/2 in. in diam and threaded at one end to take a nozzle, was used for blowing oxygen. The lance with its water and oxygen lines was supported on a cantilever arrangement so that it could be moved up, down, or sideways. Oxygen of 99.5 pct purity was supplied from a cylinder and metered through a rotameter equipped with pressure and temperature gages. Another pressure gage was located at the top of the lance. A schematic diagram of the assembly is shown in Fig. 1. Before each experiment, a weighed amount of ingot iron, containing 0.02 pct C, < 0.01 pct Si, 0.10 pct Mn, 0.019 pct P, and 0.015 pct S, was charged in the furnace and melted down by induction heating. Graphite was then added to the molten charge until it became saturated. When the temperature of the charge reached the desired level, the lance was lowered to a predetermined height above the bath
Citation
APA:
(1964) Iron and Steel Division - Decarburization in Iron-Carbon System by Oxygen Top BlowingMLA: Iron and Steel Division - Decarburization in Iron-Carbon System by Oxygen Top Blowing. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1964.