Iron and Steel Division -Desulphurization of Pig Iron with Pulverized Lime - Discussion

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Bo Kalling C. Danielsson Ottar Dragge
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
2
File Size:
200 KB
Publication Date:
Jan 1, 1952

Abstract

DISCUSSION, T. L. Joseph presiding L. F. Reinartz (Armco Steel Corp., Middletown, Ohio) —I would like to know, in the practical application of the Kalling process, what kind of a lining was used, how thick was the lining, and how much metal was treated at one time? S. Fornander (author's reply)—The rotary furnace is lined with a course of fireclay bricks 6 in. thick. This course is backed by 5 in. of insulation. The furnace has a capacity of about 15 tons. Mr. Reinartz—How was the ladle preheated? Mr. Fornander—As pointed out in the paper, the furnace was heated by a gas flame in the beginning of the experiments. During these first tests, however, the desulphurization was inconsistent. We think that this was due to the fact that iron droplets sticking to the furnace walls were oxidized by the gas flame. Now, the furnace is operated without preheating of any kind, and the results are much better. T. L. Joseph (University of Minnesota, Minneapolis, Minn.)—I might add one comment. This furnace was heated with a flame and for a time they had a little difficulty due to some residual metal in the rotating drum that would oxidize in between treatments and they found therefore, that it was very essential to drain the drum completely of metal so that they would not build up any ferrous oxide between treatments and they eliminated some of their erratic heats by maintaining those more reducing conditions. It was interesting to watch this operation. As soon as the drum started to rotate there was considerable flame, at least, at the time I saw it, that came out around the flanges, indicating there was quite a little pressure on the inside of the drum. W. 0. Philbrook (Carnegie Institute of Technology, Pittsburgh)—Is the reaction slag in the Kalling process liquid or solid, and how is it separated from the metal? Mr. Fornander—In the process there is no slag in the usual sense of the word. The lime powder does not melt during the treatment. After the treatment the lime is still in the form of a fine powder. It is separated from the metal by means of a piece of wood of suitable size placed within the furnace before it is emptied. D. C. Hilty (Union Carbide & Carbon Research Laboratories, Niagara Falls, N. Y.)—Dr. Chipman has given us some of his ideas in connection with a specific effect of silicon and silica on sulphur elimination and how silicon might interfere with desulphuriz- ing in the blast furnace. I wonder if he would like to elaborate on the possibility of a similar effect of silicon in the Kalling process? J. Chipman (Massachusetts Institute of Technology, Cambridge, Mass.)—Silicon does not interfere with the Kalling process. Anything that has strong reducing action is good for desulphurization. In these tests where the temperature was low compared to blast furnace temperatures, the silicon that is in the metal is a better reducing agent than the carbon. At high temperatures, carbon is the better. It is not the silicon in the metal that interferes with desulphurization, it is the silica in the slag. Mr. Joseph—I might add that the metal that was tapped from the drum after desulphurization was really at quite a low temperature. It was not measured, but I think it was well under 1300 °C, probably 1200" or a little above that. That was one of the difficulties, and I think there is no question about the fact that the Kalling process—in that it affects desulphurization between powdered lime, solid and liquid iron— is a reaction definitely between the solid lime and the liquid iron. E. Spire (Canadian Liquid Air, Montreal, Canada) — This Kalling process seems very interesting to us and after all it is only a mixing action that is taking place between the iron and the slag. We have attempted to do the same thing in another way. We have placed at the bottom of the ladle a porous plug through which we injected an inert gas. It can be nitrogen or argon. This plug is placed at the bottom of the conventional ladle and gas injected through the plug. That has appeared in our patent. To define this new type of treatment, I use the word gasometallurgy. I do not know if you like it, but it is a way of defining methods of treating metal using gases. What we do is exactly what is done in the exchange process in another way. We have a porous plug at the bottom with a high lime slag on top of the metal. Using this method, we have very good agitation of metal and slag, and with a small flow of gas, we can achieve a very strong agitation. For instance, in the 500 lb ladle, we use only 5 liters of gas a minute. We have an agitation compared to very rapidly boiling water in a pail. Moreover, the agitation can be controlled to create any amount of mixing desired. In a few minutes, with this method, the sulphur dropped from 0.58 to 0.11. These results have been improved since, and we have obtained results like 0.08
Citation

APA: Bo Kalling C. Danielsson Ottar Dragge  (1952)  Iron and Steel Division -Desulphurization of Pig Iron with Pulverized Lime - Discussion

MLA: Bo Kalling C. Danielsson Ottar Dragge Iron and Steel Division -Desulphurization of Pig Iron with Pulverized Lime - Discussion. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account