Iron and Steel Division - Investigation of Bessemer Converter Smoke Control

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 11
- File Size:
- 894 KB
- Publication Date:
- Jan 1, 1961
Abstract
The initial phase of a research program on smoke abatement from Bessemer converters is described. In work sponsored by the American Iron and Steel Institute, a 300-lb experimental Bessemer converter was assembled to simulate blowing conditions in a commercial vessel. Measurements of smoke and dust were also made in the field on a 30-ton commercial vessel. During normal blows the dust loading from the laboratory converter averaged 0.51 lb per 1000 lb of exhaust gas. This was similar to the exhaust-gas loading of a commercial vessel. The addition of hydrogen to the blast gas of the laboratory converter caused a decided decrease in smoke density. Smoke was also reduced markedly when methane or ammonia was added instead of hydrogen. The research is continuing on a bench-scale investigation of the mechanism of smoke formation in the converter process. DURING the past 2 years, on behalf of the American Iron and Steel Institute, Battelle has been conducting a research program on the control of emissions from pneumatic steelmaking processes. The objective of the research program is to discover a practical method for reducing to an unobjectionable level the emission of smoke and dust from Bessemer converters. PRELIMINARY INVESTIGATION Although conceivably some new collecting technique may be devised which would be economically practicable for cleaning Bessemer gases, no such system based on presently known principles seems feasible because of the extremely large volume of high-temperature gases involved. Hence, the research is being directed toward prevention of smoke formation at the source. A thorough review was first made of former work to determine the present status of the cleaning of converter gases. No published work was found on work done in the United States on collecting smoke or on preventing its formation in the bottom-blown, acid-Bessemer converter. In Europe, however, a number of investigations have been made on the basic-Bessemer converter. Kosmider, Neuhaus, and Kratzenstein1 conducted tests on a 20-ton converter to obtain characteristic data for dust removal and the utilization of waste heat. They concluded that because of the submicron size of the dust, special equipment would be necessary to clean the exhaust gases. Dehne2 conducted a large number of smoke-abatement experiments at Duisburg-Huckingen in a 36-ton Thomas converter discharging into a stack. A number of wet-scrubbing and dry collectors were tried unsuccessfully. A waste-heat boiler and electrostatic collector with necessary gas precleaners was felt to be the best solution for this particular plant. Meldau and Laufhutte3 determined that the particle size was all below 1 µ in the waste gas of a bottom-blown converter. Sel'kin and zadalya4 describe the use of oxygen-water mixtures injected into a molten bath in refining open-hearth steel. They claim that with use of oxygen-water mixtures the amount of dust formed was reduced between 33.3 and 20 pct of its previous level, and emission of brown smoke almost ceased. Pepperhoff and passov5 attempted unsuccessfully to find some correlation between the optical absorption of the smoke, the flame emission, and the composition of the metal in a Thomas converter in order to determine automatically the metallurgical state in the melt. In a recent U. S. Patent (NO. 2,831,762)' issued to two Austrian inventors, Kemmetmuller and Rinesch, the inventors claim a process for treating the exhaust gases from a converter. By their method the inventors claim that the exhaust gases from the converter are cooled immediately after leaving the converter to a degree that oxidation of the metal vapors and metal particles to form Fe2O3 is inhibited in the presence of surplus oxygen. Gledhill, Carnall, and sargent7 report on cleaning the gases from oxygen lancing of pig iron in the ladle. They claim the Pease-Anthony Venturi scrubber removed 99.5 + pct of the smoke, thereby reducing the concentration to 0.1 to 0.2 grain per cu ft, which resulted in a colorless stack gas after the evaporation of water. Fischer and wahlster8 developed a small basic converter and compared the metallurgical behavior of the blow with that of a large converter. Later work by Kosmider, Neuhaus, and Hardt9 on the use of steam for reduction of smoke from an oxygen-enriched converter confirmed that the cooling effect of steam is detrimental to production. From review of all of the published information on the subject, it was concluded that a practical solution to the smoke-elimination problem had not been found. Accordingly, it was deemed desirable to investigate the feasibility of preventing the initial formation of smoke in the converter.
Citation
APA:
(1961) Iron and Steel Division - Investigation of Bessemer Converter Smoke ControlMLA: Iron and Steel Division - Investigation of Bessemer Converter Smoke Control. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1961.