Iron and Steel Division - Reduction Kinetics of Magnetite in Hydrogen at High Pressures

The American Institute of Mining, Metallurgical, and Petroleum Engineers
W. M. McKewan
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
321 KB
Publication Date:
Jan 1, 1962

Abstract

Magnetite pellets were reduced in flowing hydrogen at pressures up to 40 atm over a temperature range of 350° to 500°C. The rate of weight loss of oxygen per unit area of the reaction surface was found to be constant with time at each temperature and pressure. The reaction rate was found to be directly proportional to hydrogen pressure up to 1 atm and to approach a maximum rate at high pressures. The results can be explained by considering the reaction surface to be sparsely occupied by adsorbed hydrogen at low pressures and saturated at high pressures. PREVIOUS investigation1,2 have shown that the reduction of iron oxides in hydrogen is controlled at the reaction interface. Under fixed conditions of temperature, hydrogen pressure, and gas composition, the reduction rate is constant with time, per unit surface area of residual oxide, and is directly proportional to the hydrogen pressure up to one atmosphere. The reduction rate of a sphere of iron oxide can be described3 by the following equation which takes into account the changing reaction surface area: where ro and do are the initial radius and density of the sphere; t is time; R is the fractional reduction; and R, is the reduction rate constant with units mass per area per time. The quantityis actually the fractional thickness of the reduced layer in terms of fractional reduction R. It was found in a previous investigation2 of the reduction of magnetite pellets in H2-H,O-N, mixtures, that the reaction rate was directly proportional to the hydrogen partial pressure up to 1 atm at a constant ratio of water vapor to hydrogen. Water vapor poisoned the oxide surface by an oxidizing reaction and markedly slowed the reduction. The enthalpy of activation was found to be + 13,600 cal per mole. It was also found that the magnetite reduced to meta-stable wüstite before proceeding to iron metal. The following equation was derived from absolute reaction-rate theory4,8 to expfain the experimental data: where Ro is the reduction rate in mg cm-2 min-'; KO contains the conversion units; Ph2 and PH2O are the hydrogen and water vapor partial pressures in atmospheres; Ke is the equilibrium constant for the Fe,O,/FeO equilibrium; Kp is the equilibrium constant for the poisoning reaction of water vapor; L is the total number of active sites; k and h are Boltzmann's and Planck's constants; and AF is the free energy of activation. Tenenbaum zind Joseph5 studied the reduction of iron ore by hydrogen at pressures over 1 atm. They showed that increasing the hydrogen pressure materially increased the rate of reduction. This is in accordance with the work of Diepschlag,6 who found that the rate of reduction of iron ores by either carbon monoxide or hydrogen was much greater at higher pressures. He used pressures as high as 7 atm. In order to further understand the mechanism of the reduction of iron oxide by hydrogen it was decided to study the effect of increasing the hydrogen pressure on rebduction rates of magnetite pellets. EXPERIMENTAL PROCEDURE The dense magnetite pellets used in these experiments were made in the following manner. Reagent-grade ferric oxide was moistened with water and hand-rolled into spherical pellets. The pellets were heated slowly to 550°C in an atmosphere of 10 pct H2-90 pct CO, and held for 1 hr. They were then heated slowly to 1370°C in an atmosphere of 2 pct H2-98 pct CO, then cooled slowly in the same atmosphere. The sintered pellets were crystalline magnetite with an apparent density of about 4.9 gm per cm3. They were about 0.9 cm in diam. The porosity of the pellets, which was discontinuous in nature, was akrout 6 pct. The pellets were suspended from a quartz spring balance in a vertical tube furnace. The equipment is shown in Fig. 1. Essentially the furnace consists of a 12-in. OD stainless steel outer shell and a 3-in. ID inconel inner shell. The kanthal wound 22 in. long, 1 1/2, in. ID alumina reaction tube is inside the inconel inner shell. Prepurified hydrogen sweeps the reaction tube to remove the water vapor formed during the reaction. The hydrogen is static in the rest of the furnace. The sample is placed at the bottom of the furnace in a nickel wire mesh basket suspended by nickel wire from the quartz spring. The furnace is then sealed, evacuated, and refilled with argon several times to remove all traces of oxygen. It is then evacuated, filled with
Citation

APA: W. M. McKewan  (1962)  Iron and Steel Division - Reduction Kinetics of Magnetite in Hydrogen at High Pressures

MLA: W. M. McKewan Iron and Steel Division - Reduction Kinetics of Magnetite in Hydrogen at High Pressures. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account