Iron and Steel Division - Relation between Chromium and Carbon in Chromium Steel Refining

The American Institute of Mining, Metallurgical, and Petroleum Engineers
D. C. Hilty
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
321 KB
Publication Date:
Jan 1, 1950

Abstract

It has long been known that in melting high-chromium steels, some of the carbon might be oxidized out of the melt without excessive simultaneous oxidation of chromium, and that higher temperatures favor retention of chromium. The advent of oxygen injection as a tool for rapid decarburization of a steel bath permits significantly higher bath temperatures, and it was quickly recognized that the use of oxygen injection facilitated the oxidation of carbon to low levels in the presence of relatively high residual chromium contents. Up to the present time, however, specific data pertaining to the chro-mium-carbon-temperature relations in chromium steel refining have not been available. Individual steelmakers have evolved practices more or less empirically, but there has been very little real basis for predicting how effective any given practice can be in permitting maximum oxidation of carbon with minimum loss of chromium. The current investigation, therefore, was undertaken in an effort to establish the fundamental carbon-chromium relationship in molten iron under oxidizing conditions. As reported below, the equilibrium constant and the influence of temperature on that constant have been derived for the iron-chromium-carbon-oxygen reaction in the range of chromium steel compositions with what appears to be a fair degree of precision. The practical application of the result will be obvious. Experimental Procedure The laboratory investigation was carried out on chromium steel heats melted in a magnesia crucible in a 100-lb capacity induction furnace at the Union Carbide and Carbon Re- search Laboratories. The charges for the heats consisted of Armco iron, low-carbon chromium metal, and high-carbon chromium metal, the relative proportions of which were calculated so that the various heats would contain from approximately 0.06 pct carbon and 8 pct chromium to 0.40 pct carbon and 30 pct chromium at melt-down. When the charges were melted, the bath temperatures were raised to the desired level, and the heats were then decarburized by successive injections of oxygen at the slag-metal interface through a ½-in. diam silica tube at a pressure of 30 psi. The duration of the oxygen injections was from 30 sec to 2 min. at intervals of approximately 5 to 30 min. It did not appear that length or frequency of the injection periods had any significant effect on the results; cansequently, no effort was made to hold them constant and they were controlled only as was expedient to the general working of the heats. Between successive injections, the heats were sampled by means of a copper suction-tube sampler that yields a sound, rapidly-solidified sample representative of the composition of the molten metal at the temperature of sampling. This sampling device is a modification of the one described by Taylor and Chipman.1 An attempt was made to vary bath temperatures between samples, but it quickly became evident that, unless the variations were small or unless the new temperature was maintained for a minimum of 15 min. during which an injection of oxygen was made in order to accelerate the reactions, a very wide departure from equilibrium resulted. For most of the runs, therefore, temperature was maintained relatively constant at approximately 1750 or 1820°C. A few reliable observations at other temperatures, however, were obtained. Temperature Measurement The high temperatures involved in this investigation were measured by the radiation method, utilizing a Ray-O-Tube focused on the closed end of a refractory tube immersed in the metal bath. The immersion tubes employed were high-purity alumina tubes specially prepared by the Tona-wanda Laboratory of The Linde Air Products Co. These tubes were quite sturdy under reasonable mechanical stress at high temperature. They were unusually resistant to thermal shock, and chemical attack on them by the melts was slow. With care, it was found possible to keep these tubes continuously immersed in a heat for as long as 5 hr at temperatures up to 1850°C, before failure by fluxing occurred. The Ray-O-Tube—alumina tube assemblage was similar to those supplied commercially for lower temperature applications. In operation, the alumina tube was slowly immersed in the molten metal to a depth of approximately 5 in., and the device was then clamped solidly to a supporting jig where it remained for the duration of the run. A photograph of the equipment, in operation with Ray-O-Tube in place and oxygen injection in progress, is shown in Fig 1. When in position in a heat, the instrument was calibrated by means of an immersion thermocouple and an optical pyrometer. For calibration through the range of temperatures from 1500 to 1650°C, a platinum -platinum + 10 pct rhodium thermocouple in a silica tube was immersed alongside the alumina tube. Output of the Ray-O-Tube in millivolts and the
Citation

APA: D. C. Hilty  (1950)  Iron and Steel Division - Relation between Chromium and Carbon in Chromium Steel Refining

MLA: D. C. Hilty Iron and Steel Division - Relation between Chromium and Carbon in Chromium Steel Refining. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account