Iron and Steel Division - Silicon-Oxygen Equilibrium in Liquid Iron

The American Institute of Mining, Metallurgical, and Petroleum Engineers
N. A. Gokcen John Chipman
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
11
File Size:
918 KB
Publication Date:
Jan 1, 1953

Abstract

SILICON is the most commonly used deoxidizer and an important alloying element in steelmak-ing; hence a detailed study of this element in liquid iron containing oxygen is of considerable interest. The equilibrium between silicon and oxygen in liquid iron has been studied by a number of investigators but generally with inconclusive or incomplete results. The variation of the activity coefficients of silicon and oxygen with composition is entirely unknown. Published investigations deal with the reaction of dissolved oxygen with silicon in liquid iron and the results are expressed in terms of a deoxidation product. For consistency and convenience in comparison of the published information, the deoxidation product as referred to the following reaction is expressed in terms of the percentage by weight of silicon and oxygen in the melt in equilibrium with solid silica: SiO (s) = Si + 2 O; K'l = [% Si] [% 012 [I] Theoretical attempts to calculate the deoxidation constant for silicon in liquid iron from the free energies of various reactions yielded results which were invariably lower than the experimental values. Thus, the deoxidation "constants" calculated by McCance,1,2 Feild,3 Schenck, and Chipman were of the order of 10, which is below the experimental values by a factor of more than 10. Experiments of Herty and coworkers" in the laboratory and steel plant resulted in an average deoxidation constant of 0.82x10 ' at about 1600°C. The technique employed in their investigation was crude and the reported temperature was quite uncertain. The concentration of silicon was obtained by subtracting silicon in the inclusions from the total. Since at least some of the inclusions resulting from chilling must represent a fraction of the silicon in solution at high temperatures, such a subtraction is not justifiable. Results of Schenck4 for K'1 from acid open-hearth plant data yielded a value of 2.8x10-5, which was later revised as 1.24x10 at 1600°C. Similarly Schenck and Bruggemann7 obtained 1.76x10-5 at 1600OC. The discrepancies and errors involved in the acid open-hearth plant data as compared with the results of more reliable laboratory techniques were attributed by these authors to the lack of equilibrium and the impurities in liquid metal and slag, and are sufficiently discussed elsewhere." Korber and Oelsen" investigated the relation between dissolved oxygen and silicon in liquid iron covered with silica-saturated slags containing varying concentrations of MnO and FeO. The deoxidation products obtained by their method scatter considerably, and their chosen average values of 1.34x10, 3.6x10-5, and 10.6x10-5 1550°, 1600°, and 1650°C, respectively, represent the best experimental results which were available until quite recently. Darken's10 plant data from a steel bath agree approximately with their data at 1575° to 1625°C. Zapffe and Sims" investigated the reaction of H2O and H2 with liquid iron containing less than 1 pct Si and obtained deoxidation products varying by a factor of more than 20. Inadequate gas-metal contact and lack of stirring in the metal bath should require a longer period of time than the 1 to 5.5 hr which they allowed for the attainment of equilibrium. Furthermore, their oxygen analyses were incomplete and irregular and confined to a few unsatisfactory preliminary samples. Their results did indeed indicate that the activity coefficient of oxygen is decreased by the presence of silicon, although they made no such simple statement. They chose to attempt to account for their anomalous data by the unlikely hypothesis that SiO is dissolved in the melt. Hilty and Crafts" investigated the reaction of liquid iron with acid slags under an atmosphere of argon, making careful determinations of silicon and oxygen contents at several temperatures. Despite erroneous interpretation of the data at very low silicon concentrations, their data represent the most dependable information on this equilibrium that has been published. In the range 0.1 to 1.0 pct Si, their data yield the following values for the deoxidation product: 1.6x10-5, 3.0x10- ', and 5.3x10 at 1550°, 1600°, and 1650°C, respectively. The purpose of the work described herein was to study the equilibrium represented by eq 1 as well as the following reactions, all in the presence of solid silica: SiO2 (s) + 2H2 (g) = Si + 2H2O (g);
Citation

APA: N. A. Gokcen John Chipman  (1953)  Iron and Steel Division - Silicon-Oxygen Equilibrium in Liquid Iron

MLA: N. A. Gokcen John Chipman Iron and Steel Division - Silicon-Oxygen Equilibrium in Liquid Iron. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1953.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account