Iron and Steel Division - Stabilization of Certain Ti2Ni-Type Phases by Oxygen

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 399 KB
- Publication Date:
- Jan 1, 1961
Abstract
In the systems Ti-Mn-O, Ti-Fe-O, Ti-Co-O, and Ti-Ni-O the bounda.r-ies of the Ti2Ni-type phases were determined at one or more temperatures and the variation of the lattice parameter with oxygen content was determined. Densities were calculated from the lattice parameters and compared with measured density values. The: results indicate that the occurrence of the phase in these systesms can be correlated qualitatively with valency electron concentration, and that the role of oxygen is that of an electron acceptor. The lower limit of oxygen solubility appears to be determined by the valencies of Mn, Fe, Co, and Ni, while the maximum oxygen concentration coincides with the filling of the 16 (c) positions of the O 7h - Fd 3m space group. THE suggestion has been made by several investigators'" that the phases having the cubic E9,-type structure, and known as 17-carbide-type, double-carbide-type and Ti,Ni-type, are members of a family of electron compounds. This concept has been given additional support by recent work8 in which new isostructural phases involving second and third long period combinations were found, and which provided further evidence of the regularity of occurrence of the phase in terms of periodic table relationships. In this laboratory attention has been focused on the isomorphs containing titanium, zirconium, or hafnium, and the role that oxygen plays in their occurrence. In some binary systems Ti,Nitype* phases occur having the formula A,B where A is the titanium group element. Based on previous workq and the present investigation, oxygen is known to be soluble in two of these binary phases, Ti,Co and Ti2Ni. It is probable that oxygen is also soluble in the other phases of this kind. In other binary systems the Ti,Ni-type phase does not occur, but does occur in the corresponding ternary systems with oxygen .3-5 The experiments described here were performed to determine whether the occurrence and composition of certain of the Ti,Ni-type phases could be related to an electronic effect and whether oxygen's stabilizing role is exerted through an influence on the electron: atom ratio. The ternary systems Ti-Mn-O, Ti-Fe-O, n-Co-O, and Ti-Ni-O were selected for study for two reasons: First, several schemes have been proposed for first long period elements which, although not in quantitative agreement, show a generally consistent trend for the variation of valency with atomic number. Although for a transition metal the term valency is difficult to define and is generally not a constant number which can be applied to all alloys, it is usually assumed to be an index of the number of electrons per atom involved in metallic cohesion. Second, the determination of the Ti2Ni-type phase boundaries was facilitated by the fact that the phase relations in several of these ternary systems have been investigated by other workers."' EXPERIMENTAL PROCEDURE___________________ The alloys were prepared by arc melting crystal-bar titanium, reagent grade TiO, and electrolytic manganese, iron, cobalt, and nickel. Each button was remelted at least three times. The metals had a minimum purity of 99.9 pct except the nickel whose purity was 99.4 pct, the major impurity in this instance being cobalt. The preparation of the manganese alloys was attended by the customary difficulties associated with the vaporization of manganese. The technique used in this case was to add approximately 10 pct extra manganese to the original charge and to continue remelting the button until the final weight was in agreement with its intended weight. At least three alloys in each system were analyzed chemically and the results, even for the manganese alloys, were in good agreement with the intended compositions. A few additional alloys in the Ti-Mn-O system were prepared by the sintering of mixed powders in evacuated quartz tubes followed in some cases by arc melting. For annealing, the alloys were wrapped in molybdenum foil and placed in fused silica tubes containing zirconium chips. The fused silica tubes were evacuated at room temperature to a pressure of 1 x l0-6 mm of Hg and sealed. These capsules were then annealed for 72 hr at an external pressure of 5 x 10-5 mm of Hg in a vacuum furnace whose temperature could be controlled to + 1°C. The success of this procedure in avoiding significant oxygen or nitrogen pickup was indicated by the bright, ductile condition of the molybdenum foil and by the complete absence of a microscopic reaction layer on the specimens. This method did not permit rapid quenching of the specimens but in no case did metal-lographic examination indicate that a solid-state transformation had occurred on cooling. Metallo-
Citation
APA:
(1961) Iron and Steel Division - Stabilization of Certain Ti2Ni-Type Phases by OxygenMLA: Iron and Steel Division - Stabilization of Certain Ti2Ni-Type Phases by Oxygen. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1961.