Iron and Steel Division - Structure and Transport in Lime-Silica-Alumina Melts (TN)

The American Institute of Mining, Metallurgical, and Petroleum Engineers
John Henderson
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
2
File Size:
176 KB
Publication Date:
Jan 1, 1963

Abstract

FOR some time now the most commonly accepted description of liquid silicate structure has been the "discrete ion" theory, proposed originally by Bockris and owe.' This theory is that when certain metal oxides and silica are melted together, the continuous three dimensional silica lattice is broken down into large anionic groups, such as sheets, chains, and rings, to form a liquid containing these complex anions and simple cations. Each composition is characterized by "an equilibrium mixture of two or more of the discrete ions",' and increasing metal oxide content causes a decrease in ion size. The implication is, and this implication has received tacit approval from subsequent workers, that these anions are rigid structures and that once formed they are quite stable. The discrete ion theory has been found to fit the results of the great majority of structural studies, but in a few areas it is not entirely satisfactory. For example it does not explain clearly the effect of temperature on melt structure,3 nor does it allow for free oxygen ions over wide composition ranges, the occurrence of which has been postulated to explain sulfur4 and water5 solubility in liquid silicates. In lime-silica-alumina melts the discrete ion theory is even less satisfactory, and in particular the apparent difference in the mechanism of transport of calcium in electrical conduction8 and self-diffusion,' and the mechanism of the self-diffusion of oxygen8 are very difficult to explain on this basis. By looking at melt structure in a slightly different way, however, a model emerges that does not pose these problems. It has been suggested5" that at each composition in a liquid silicate, there is a distribution of anion sizes; thus the dominant anionic species might be Si3,O9 but as well as these anions the melt may contain say sis0:i anions. Decreasing silica content and increasing temperature are said9 to reduce the size of the dominant species. Taking this concept further, it is now suggested that these complexes are not the rigid, stable entities originally envisaged, but rather that they exist on a time-average basis. In this way large groups are continually decaying to smaller groups and small groups reforming to larger groups. The most complete transport data 8-10 available are for a melt containing 40 wt pct CaO, 40 wt pct SiO2, and 20 wt pct Al2O3. Recalculating this composition in terms of ion fractions and bearing in mind the relative sizes of the constituent ions, Table I, it seems reasonable to regard this liquid as almost close packed oxygens, containing the other ions interstitially, in which regions of local order exist. On this basis, all oxygen positions are equivalent and, since an oxygen is always adjacent to other oxygens, its diffusion occurs by successive small movements, in a cooperative manner, in accord with modern liquid theories." Silicon diffusion is much less favorable, firstly because there are fewer positions into which it can move and secondly, because it has the rather rigid restriction that it always tends to be co-ordinated with four oxygens. Silicon self-diffusion is therefore probably best regarded as being effected by the decay and reformation of anionic groups or, in other words, by the redistribution of regions of local order. Calcium self-diffusion should occur more readily than silicon, because its co-ordination requirements are not as stringent, but not as readily as oxygen, because there are fewer positions into which it can move. There is the further restriction that electrical neutrality must be maintained, hence calcium diffusion should be regarded as the process providing for electrical neutrality in the redistribution of regions of local order. That is, silicon and calcium self-diffusion occur, basically, by the same process. Aluminum self-diffusivity should be somewhere between calcium and silicon because, for reasons discussed elsewhere,' part of the aluminum is equivalent to calcium and part equivalent to silicon. Consider now self-diffusion as a rate process. The simplest equation is: D = Do exp (-E/RT) [I] This equation can be restated in much more explicit forms but neither the accuracy of the available data, nor the present state of knowledge of rate theory as applied to liquids justifies any degree of sophistication. Nevertheless the terms of Eq. [I] do have significance;12 Do is related, however loose this relationship may be, to the frequency with which reacting species are in favorable positions to diffuse, and E is an indication of the energy barrier that must be overcome to allow diffusion to proceed. For the 40 wt pct CaO, 40 wt pct SiO2, 20 wt pct Al2O3, melt, the apparent activation energies for self-diffusion of calcium, silicon, and aluminum are not significantly different from 70 kcal per mole of diffusate,' in agreement with the postulate that these elements diffuse by the same process. For oxygen self-diffusion E is about 85 kcal per mole,' again in agreement with the idea that oxygen is transported,
Citation

APA: John Henderson  (1963)  Iron and Steel Division - Structure and Transport in Lime-Silica-Alumina Melts (TN)

MLA: John Henderson Iron and Steel Division - Structure and Transport in Lime-Silica-Alumina Melts (TN). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1963.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account