Iron and Steel Division - Sulphur Equilibria between Iron Blast Furnace Slags and Metal - Discussion

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 2
- File Size:
- 53 KB
- Publication Date:
- Jan 1, 1950
Abstract
T. ROSENQVIST*—It is a pleasure to see the excellent way in which the experimental part of this work has been handled. There seems to be little doubt that the distribution data obtained corresponds most closely to thermodynamic equilibrium under the prevailing reducing conditions, namely equilibrium with graphite and one atmosphere CO pressure. The desulphurization curves in Fig 10 show the same general feature as the curves given by Holbrook and Joseph, but the distribution ratios are from 20 to 40 times greater—undoubtedly due to a closer approach to true equilibrium. In the theoretical discussion, the authors calculate a theoretical distribution (S) ration -jg-. which they find to be about 50 times greater than the experimental. The deviation is so great that the basis for their calculation needs a more thorough examination. The authors base their thermodynamic calculation on free energy expressions where diluted solutions of FeS and CaS are used as standard states. (The activity coefficient in diluted solutions is taken to equal unity.) Such a standard state will change when the nature of the solvent is changed. Taking the free energy of the reaction [FeS] ? (FeS), Eq 2, which is derived from the distribution of sulphur between an iron and a FeO-melt, it is very unlikely that the free energy of this reaction will be the same for a distribution between pig iron and a calcium silicate slag. Therefore a more fundamental basis for the thermodyuamic calculations seems needed, where all thermodynamic equations are referred to unambiguously defined standard states. The most natural standard states for CaO and CaS are the pure solid substances at the same temperature. As standard state for sulphur in iron, pure liquid FeS can be used. This rules out Eq 2 [FeS] ;=s (FeS) because ?F° = 0. The standard equation will then be: FeS, + CaO6 + Cgraph ?Fei + CaS8 + CO. vFo1773 = 25,000 cal It would be more universal and also simpler to refer the escaping tendency of sulphur in liquid iron to the corresponding H2S/H2 ratio which can readily be determined experimentally. As standard state a gas mixture H2S/H2 = 1/1 can be used. (This corresponds at the temperature of liquid iron closely to one atmosphere S2 vapor.) Thus the standard equation for the sulphur reaction can be formulated as follows: H2S0 + CaO3 + Cgraph ?H2o + CaS8 + COg The standard free energy of this reaction has been calculated from the best available data to AF°m3 = —35,000 cal. This gives for the equilibrium constant at 1500°C Now, the solubility of CaS in blast furnace slags has been determined by McCafferey and Oesterle* and corresponds at 1500°C to about 10 pet S (varying somewhat with the composition of the slag.) If the activity of CaS is assumed linear between 0-10 pet as curve 1, (see Fig 11), then acaO = 0.1 (S); (S) being wt. pet sulphur in the slag. For a diluted solution of sulphur in an iron melt saturated with carbon, the ratio H2S/H2 is, according to Kitchener, Bockris and Liberman,f about 0.01 [S], [S] being wt. pet sulphur in iron. Substituting these values in the expression for Kp we find The value 2.103 is only 4 times greater than the experimental coefficient found by Hatch and Chipman, but the value is very sensitive to a small error in AF°. A better agreement with the experimental distribution coefficient can be obtained if one assumes the activity of CaS to run like curve 2 (Fig 11). This (S) will give a lower theoretical W, value, a value which varies with (S) exactly as Hatch and Chipman learned. Such a shape of the activity curve, which corresponds to a positive deviation from Raoult's law, is actually to be expected from the fact that liquid silicate and sulphide phases usually show incomplete miscibility. A closer agreement between experimental and theoretical data can not be expected before we have more complete data for the individual activities of CaS and CaO in the slag. The activities acaS and Ocao referred to the solid phases as standard states, are exact defined quantities contrary to the somewhat undefined expression "free lime," and they are independent of any theory for the constitution of liquid slag. J. CHIPMAN (authors' reply)—The authors wish to thank Mr. Rosenqvist for his very interesting and useful thermodynamic addition. Curve 2 of his figure offers the needed basis for explaining the increase in the ratio (S)/[S] with increasing sulphur content. Attention is called to an error in the printed paper: Fig 2 and 3 are reversed. M. TENENBAUM*—In the figures showing the relationship between excess base and sulphur distribution (Fig 6, 7 and 9) the slope of the curve tapers off in the negative basicity range. Somewhat the same thing is observed with open hearth slags. In that case, the fact that some sulphur distribution between slag and metal is obtained with negative basicity is interpreted as indicating some dissociation of the lime silicate compounds whose existence in oxidizing basic slags has been used to explain various observed phenomena with regard to other slag-metal reactions. In the case of the blast furnace slags, the reduced slope of the sulphur distribution curve with decreasing excess base is attributed to the amphoteric effect of alumina. Has the possibility of other explanations been investigated ?
Citation
APA:
(1950) Iron and Steel Division - Sulphur Equilibria between Iron Blast Furnace Slags and Metal - DiscussionMLA: Iron and Steel Division - Sulphur Equilibria between Iron Blast Furnace Slags and Metal - Discussion. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.