Iron and Steel Division - The Activity of Silicon in Liquid Fe-Si-C Alloys

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 359 KB
- Publication Date:
- Jan 1, 1963
Abstract
The distribution of silicon between liquid silver and Fe-Si-C alloys has been studied at 1420oand 1530°C. The data are consistent with earlier studies. New data of Hager on the liquidus lines of the system Ag-Si and the distribution data are used to obtain the activity coefficient of silicon in both liquid phases. Data on the heat of mixing in iron permit accurate extension to 1600°C. Equilibrium data involving SiO2 and silicon in liquid iron together with revised data on the free energy of SiO2 are used to fix the activity of silicon in the infinitely dilute solution. The binary system exhibits strong negative deviation from ideality. At infinite dilution ? Si at 1600" is 1.25 x 10'3, and at concentrations up to NSi = 0.4 the slope d InySi/dNSi has a constant value of r; = 13. It is found that logysi in the ternary solutzon is approximately but not exactly the same function of Nsi + NC as of NSi in the binary. The results are consistent with currently available data on the free energy of Sic and its solubility in molten iron. LIQUID solutions of the system Fe-Si-C have acquired considerable importance as the laboratory prototypes of blast furnace hot metal. Equilibrium studies involving such solutions and slags approximating those of the blast furnace have yielded useful information concerning the thermodynamic properties of blast furnace slags. In studies of this kind great importance attaches to a knowledge of the thermodynamic activity of silicon in the solution as a function of temperature and composition. An attempt was made by Chipman, Fulton, Gokcen, and askey' to evaluate all of the pertinent data on this system and to deduce the desired relation between activity, composition, and temperature. These authors published data on the solubility of graphite and Sic in molten Fe-C-Si solutions and on the distribution of silicon between liquid iron and liquid silver. They showed further how the activity of silicon in very dilute solutions in liquid iron could be calculated from equilibrium data involving the molten alloy and solid SiO,. These calculations rested on the published thermodynamic properties of SiO, in- cluding its heat of formation which at that time was recorded as -209.8 kcal. This value has been under suspicion for some time and has recently been replaced by the concordant results from two independent laboratories2,3 which place the heat of formation of a-quartz at -217.6 kcal. This revision necessitates a re-evaluation not only of the activity of SiO2 in slag but also of silicon in molten iron. It is the purpose of this paper, therefore, to recalculate the activity of silicon, and in furtherance of this objective to present new data on its distribution between liquid Fe-Si-C alloys and liquid silver. HEAT OF SOLUTION OF SILICON IN IRON In order to determine the effect of temperature upon the activity coefficient it is necessary to know the heat of solution of silicon in iron as a function of composition. This is found in the data of Korber and Oelsen4 shown in Fig. 1. The curve corresponds to the following equation, which is of a form suggested by Wagner:5 Here AH is the heat absorbed in kilocalories in forming one gram atom of molten alloy from its molten elements and the N's are atom fractions. The relative partial molal enthalpies of the components, each referred to its pureliquid state and defined as zFe = aFe - PFe and zsi = HSi — -psi, are shown graphically. At low concentrations zSi = -28.5 kcal, in agreement with Kijrber and Oelsen's computation. This is in good agreement with the value of -29.3 kcal obtained by Chipman and Grant6 using an entirely different method. ACTIVITY AT INFINITE DILUTION From the known free energy of SiO, it is possible to obtain the activity of silicon in dilute solution in liquid iron from equilibrium studies. The heat of formation of a-quartz is —217.6 kcal and the heat capacity and entropy data are given by Kelley and ~ing.' The free energy of formation of ß-cristo-balite at temperatures above the melting point of silicon is expressed by the following equation: Si(Z) + O2(g) = SiO2 (crist); AF" =-226,500 + 47.50T [I] The value of the deoxidation product for silicon [%Si] x [%O]2 at 1600°C according to Gokcen and chipmans is 2.8 x 10"5, in agreement with results of Hilty and Crafts.9 More recent works of Matoba,
Citation
APA:
(1963) Iron and Steel Division - The Activity of Silicon in Liquid Fe-Si-C AlloysMLA: Iron and Steel Division - The Activity of Silicon in Liquid Fe-Si-C Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1963.