Iron and Steel Division - The Effect of Carbon on the Activity of Sulphur in Liquid Iron - Discussion

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. P. Morris R. C. Buehl
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
1
File Size:
97 KB
Publication Date:
Jan 1, 1951

Abstract

F. D. Richardson—The authors are to be congratulated on this further contribution to our knowledge of the thermodynamics of the interaction between sulphur and carbon and silicon in liquid iron. As the authors state, the influence of carbon and silicon on the activity coefficient of sulphur in liquid iron is clearly of great importance in the blast furnace, since it must cause a three to fourfold improvement in the partition of sulphur between slag and metal. The influence of increasing temperature in further increasing the activity coefficient of the sulphur in the metal in the blast furnace by increasing the carbon content is also of interest. This effect, however, is probably only part of the reason for the general observation in blast furnace practice, that the sulphur content of the metal is lowered by increasing temperature. Other contributing factors are the lowering of the oxygen potential in the presence of carbon by increasing temperature and the probable increase in the activity coefficient of the lime in the slag for the same reason. The former of these effects, which works via the (CaO) + [S] = (CaS) + [O] equilibrium, might possibly account for a 70 pct improvement in the sulphur partition and the latter might give a further 50 pct improvement. C. Sherman—I would like to compliment the authors on their very careful research. If I may, I would like to show results of calculations on the carbon-sulphur-iron system similar to the ones that were shown in our paper for the silicon-sulphur-iron system. For Fe-S-C ternary system k=PHgs/PH2 x 1/(f1°) (f2°) (%S) where fs = sulphur activity coefficient fs' = fs for Fe-S system of equal pct S f3° = f2/f2 for Fe-S-C ternary system This same analysis has been used on other systems, but the results shown in fie.- 7 are for carbon and silicon. L. S. Darken—I would like to make two brief comments in addition to complimenting the authors on an apparently very precise and accurate investigation. The first is that the present work is in agreement with a calculation by Larsen and myself." Our calculation (much less precise than the present work) was based on: (1) Unpublished work on the sulphur content of molten iron (1.5 pct at 1500°C) in equilibrium with graphite and an iron sulphide slag; (2) the distribution coefficient of sulphur between slag and carbon-free liquid iron. We expressed the result in a form equivalent to log 7. = 0.18 [%C] which gives an activity coefficient (?s.) of sulphur only slightly higher than the authors find and certainly within the precision of the earlier work. My second comment concerns the correlation of the thermodynamic findings with atomistics. A rough pic- ture of the atomic arrangement in the liquid solution is rather easily conceived for this particular liquid solution containing iron, carbon, and sulphur. Carbon has a very much stronger affinity for iron than for sulphur. Hence we may conclude that a sulphur atom will but seldom be adjacent to a carbon atom—since this would be a position of high energy. From the metallic radii of iron and carbon we know that six iron atoms pack neatly around one carbon atom. Thus each carbon atom in retaining this shell of iron atoms (which latter may not be replaced by sulphur on account of the high energy requirement) decreases the available positions for each sulphur atom by six. Hence each atomic percent of carbon decreases the equilibrium sulphur content by 6 pct (of itself). Or, at low concentration each atomic percent of carbon increases the activity coefficient of sulphur by 6 pct. This is in good agreement with the observed increase (6 or 7 pct at low carbon content). It is indeed gratifying to find a case where, by such simple reasoning, quantitative agreement is found between precise data and the modern picture of the atomistics of the metallic state. J. P. Morris (authors' reply)—We would like to point out that there is an error in the equation on p. 322 of the paper. The third equation should read: ½S2 (gas) + H2 (gas) = H2S (gas) The authors wish to thank everyone for the interest they have shown in the paper. In regard to the general observation in blast furnace practice, that the sulphur content of the metal is lowered by increasing the temperature, Dr. Richardson is correct in stating that the cause can be attributed only in part to the increase in activity coefficient of sulphur resulting from the rise in carbon plus silicon content of the metal with rise in temperature. However, this factor is probably an important one. The results of one experiment, performed since this report was written, indicate that at a constant temperature the addition of silicon to a melt saturated with carbon causes an increase in the activity coefficient of sulphur even though the carbon solubility is lowered. In this test, 2.5 pct silicon was added to a melt saturated with carbon and maintained at 1400°C. Although the carbon content dropped from 4.85 to 4.1 pct, the activity coefficient of sulphur was increased by about 20 pct.
Citation

APA: J. P. Morris R. C. Buehl  (1951)  Iron and Steel Division - The Effect of Carbon on the Activity of Sulphur in Liquid Iron - Discussion

MLA: J. P. Morris R. C. Buehl Iron and Steel Division - The Effect of Carbon on the Activity of Sulphur in Liquid Iron - Discussion. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1951.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account