Iron and Steel Division - The Mechanism of Iron Oxide Reduction

The American Institute of Mining, Metallurgical, and Petroleum Engineers
B. B. L. Seth H. U. Ross
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
381 KB
Publication Date:
Jan 1, 1965

Abstract

A generalized rate equation for the reduction of iron oxide was derived from which two particular equations were obtained: one for rate controlled by the transportation of gas, the other for rate controlled by the phase-boundary reaction. Pellets of pure ferric oxide having diameters of 8.5 to 17.5 mm and a density of 4.8 g per cm3 were prepared and reduced by hydrogen at 750° to 900°C. From the analysis of data obtairzed, it was observed that neither the phase-houndarv reaction nor the transportation of gas controlled entirely the rate of redziction. Rather, the mechanism of reduction can he divided into three stages. In the beginning, the process seems to depend predominantly on the surJrce reaction, hut after a layer of iron is formed the diffusion of gas becomes the controlling factor. Towards the end, however, the rate falls sharply due to a decrease in porosity. The times predicted by the generalized equation for a certain degree of reduction showed an excellent agreement with those obtained experinmentally for pellets of varying sizes. WIDE interest in iron oxide reduction has resulted in many valuable studies pertaining to thermody-namical properties, equilibrium diagrams, and chemical kinetics. Although the thermodynamical properties and equilibrium diagrams are now known with a fair degree of accuracy, the mechanism and rate-controlling step in the reduction of iron oxides presents a problem to research workers which is still unsolved. This is because the field of chemical kinetics is so highly complex. Besides the chemical reaction between oxide and reducing gas, several other processes are occurring simultaneously such as solid-state diffusion of iron through intermediate oxides (FeO and Fe3O4), the diffusion of reducing gas inwards and of product gas outwards, and the sintering of iron if reduction is carried out above the sintering temperature of iron. Furthermore, there is a large number of variables, including the nature and flow rate of the reducing gas, the chemical composition and physical properties of the ore, the temperature of reaction, particle size, and so forth, all of which can affect both the mechanism and the kinetics of reduction. Despite the controversy and diversity of opinion about the mechanism of iron oxide reduction, three main schools of thought have emerged. According to the first, the rate is controlled by the diffusion of gas through the boundary layer of stagnant gas; the second claims that the rate is proportional to the area of the metal-oxide interface, while the third believes the transportation of reducing gas from the main stream to the metal-oxide interface and of product gas from the metal-oxide interface to the main stream to be the rate-controlling step. 1) The boundary-layer theory is true mainly for packed beds where the flow of gas through the bed is important. For a single particle, the boundary layer may be prevented from being the rate-controlling step if a gas flow rate of reducing gas above the critical flow rate is used. 2) Several workers have reported a linear advance of the Fe/FeO interface which provides excellent support for the belief that reduction is controlled by the surface area. McKewanl has given formal shape to this concept with mathematical derivation and has shown it to be valid for reduction of several iron ores, hematite, and magnetite, both by H2 and H2, H2O, N2 mixtures. Some other investigators, however, do not find this theory to be entirely valid. Deviations have been observed2 and further confirmedS3 Hansen4 also agrees that deviations do occur, at least in the latter stages of reduction, while from the data of several investigators summarized by Themelis and Gauvin,5 it is clear that the theory is not always applicable and further that, when it is applicable, it does not hold in the final stages of reduction. 3) Among those who claim the transportation of gas to be the rate-controlling step are Udy and Lorig,6 Bogdandy and Janke,7 and Kawasaki el a1.8 The validity of the theory has also been acknowledged indirectly by other research workers who show that the sintering and recrystallization of iron cause a decrease in reduction rate, for it is only if the transportation of gas is important that this sintering has any bearing. However, the theory has been rejected by some because they have failed to obtain
Citation

APA: B. B. L. Seth H. U. Ross  (1965)  Iron and Steel Division - The Mechanism of Iron Oxide Reduction

MLA: B. B. L. Seth H. U. Ross Iron and Steel Division - The Mechanism of Iron Oxide Reduction. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account