Iron and Steel Division - The Mechanism of Sulphur Transfer between Carbon-Saturated Iron and CaO-SiO2-Al2O3 Slags - Discussion

The American Institute of Mining, Metallurgical, and Petroleum Engineers
G. Derge W. O. Philbrook K. M. Goldman
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
314 KB
Publication Date:
Jan 1, 1951

Abstract

T. Rosenqvist—The most interesting point in this paper is the observed transfer of iron into the slag in the initial stage of the desulphurization process, after which the iron again is reduced to the metallic state. The authors interpret this observation as showing that the sulphur enters the slag as an iron-sulphur compound which subsequently is decomposed by the slag. The present writer has previously suggested the following equation for the desulphurization process: S + O2- ? S2- + O For equilibrium in the blast furnace the oxygen potential is defined by equilibrium with graphite and CO of 1 atm pressure: C + O ? CO [2] During the desulphurization process the reactions proceed in the direction of the arrows. If one assumes eq 2 to be significantly slower than eq 1, the transfer of sulphur into the slag, in accordance with eq 1, will build up a local oxygen potential at the metal-slag interface very much higher than that corresponding to the value defined by eq 2. This is possible because the equilibrium oxygen potential in eq 1 is high as long as the sulphur content in the slag is low. This oxygen potential will again be able to oxidize some iron: Fe + O ? Fe2+ + O2- and an increase in the iron content of the slag will be observed. Adding up eqs 1 and 3 one obtains: S + Fe ? S2- + Fe2+ The net effect is thus in harmony with the experimental observation but is obtained without assuming any close ties between the sulphur and iron atoms during the process. Furthermore, it follows from eqs 1 and 2 that when the sulphur content in the slag increases, and equilibrium with C and CO is finally approached, the local oxygen potential at the metal-slag interface will decrease, and the iron in the slag will be reduced back into its metallic state. C. E. Sims-—The data and conclusions presented in this paper are thoroughly convincing in establishing the mechanism of sulphur transfer from iron to slag as in a blast furnace. The evolution of gaseous CO in step 3 of the reactions given on p. 1112 makes the process virtually irreversible. Assuming that the process is similar in slag-metal systems other than in the blast furnace, it is readily seen why free CaO and re-ducing conditions so greatly favor desulphurization. On the other hand, the very effective desulphurization obtained in oxidizing slags when strongly basic, must be attributed to the relatively high stability of CaS as compared to FeS. The ease and simplicity with which the reactions of classic chemistry agree with the experimental data and explain the mechanism is noteworthy. The concept of molecules of FeS, soluble in both phases (metallic iron is not soluble in the slag), migrating from the iron to the slag and there reacting with CaO, which is soluble only in the slag phase, is clear and uncomplicated. This is likewise true for step 3. Those who would deny the existence of molecules or molecular-type combinations in liquid iron, must strain to provide a mechanism so lucid. In the absence of molecules, the Fe and S exhibit a remarkable collusion. L. S. Darken—The investigation and interpretation of rate phenomena in the range of steelmaking temperatures is a difficult task. Most of the laboratory investigations of steelmaking reactions have been concerned with equilibrium. Having determined the equilibrium, our attention naturally focuses next on the mechanism and rate of approach to equilibrium. The authors seem to have contributed substantially to our understanding of these factors for the case of sulphur transfer. I should like to ask the authors whether they consider that the sulphur transfer reaction is diffusion controlled as many high-temperature reactions seem to be. If so, it would seem reasonable to suppose that the slow diffusion step of the process is the transfer across a pseudo-static layer or film similar to that considered in heat flow problems. As the diffusivity and fluidity are smaller for the slag than for the metal, it may tentatively be assumed that the sulphur gradient exists in a thin layer in the slag adjacent to the slag-metal interface and that the metal and the main mass of slag are each maintained uniform by convection. On this basis the amount of sulphur transferred across unit area per unit time is D p (?S%)/100 ?1, where D is the diffusivity, p the density, (?S%) the difference in percent sulphur on the two sides of the layer, and ?l is the layer thickness. At the beginning of the experiment the main body of the slag and hence one side of the layer contains no sulphur; therefore (?S%) may be replaced by (S%), the sulphur content of the slag at the slag-metal interface, which in turn is equal to L[S%] where [S%] is the sulphur content of the metal and L is the distribution coefficient. The rate of transfer thus becomes DpL[S%]/100 ?l, which the authors designate K[S%]. Equating these two quantities and setting D = 10-6 cm2 per sec, p = 3 g per cm3, L = 40, and K = lo-+ g cm-2 sec-1, it is found that ?l, the film thickness, is about 0.01 cm—a value of the order of magnitude of that found in heat transfer problems in liquids. The uncertainty of the numerical values used leaves much to be desired, but at least it can be said that this calculation tends to support the proposed model involving diffusion through a film. Although this does not seem to affect the general argument, I should like to call attention to the fact that the diffusivity3 of sulphur in hot metal is found (on conversion of units) to be about 10-4 cm2 per sec rather than 104 cm2 per sec as stated by the authors. The three equations written by the authors to express the steps in the overall process of sulphur transfer may alternatively be written ionically as only two Fe + S = Fe++ + S-- Fe++ + O-- + C (graphite or metal) = CO (gas) + Fe where the underscore is used to designate the metallic phase; ionic species are slag constituents. After the authors have so neatly demonstrated that iron and sulphur transfer together (at least initially), this fact seems almost self evident; from eq 4 it is seen that if sulphur acquires a negative charge during transfer
Citation

APA: G. Derge W. O. Philbrook K. M. Goldman  (1951)  Iron and Steel Division - The Mechanism of Sulphur Transfer between Carbon-Saturated Iron and CaO-SiO2-Al2O3 Slags - Discussion

MLA: G. Derge W. O. Philbrook K. M. Goldman Iron and Steel Division - The Mechanism of Sulphur Transfer between Carbon-Saturated Iron and CaO-SiO2-Al2O3 Slags - Discussion. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1951.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account