Iron and Steel Division - Thermal Conductivity Method for Analysis of Hydrogen in Steel (Discussion page 1551)

The American Institute of Mining, Metallurgical, and Petroleum Engineers
B. M. Shields J. Chipman N. J. Grant
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
509 KB
Publication Date:
Jan 1, 1954

Abstract

The vacuum tin-fusion method of analysis for hydrogen, developed by Carney, Chipman, and Grant, has been modified to permit the analysis of the evolved gases for hydrogen by means of a thermal conductivity cell. A properly prepared sample can be analyzed in 10 min with a probable error of ±0.12 ppm. A study of various methods for storage of hydrogen samples shows that samples can be safely held in a dry ice-acetone bath as long as six days. Storage in liquid nitrogen is necessary for samples to be held one week or more. HE vacuum tin-fusion method, as developed by I- Carney, Chipman and Grant,' is the only analytical procedure which has shown promise of being fast enough for use in the control of hydrogen during steelmaking. It was felt that further simplification and faster speed of operation could be effected by the use of thermal conductivity measurements for analysis of the gases evolved in the tin-fusion method. The application of conductivity measurements to the tin-fusion method is possible because: 1—the evolved gas is essentially a mixture of hydrogen, nitrogen and carbon monoxide with a hydrogen content usually over 50 pct, 2—the evolved gas is collected at a relatively low pressure, and 3— the thermal conductivities of CO and N2 are practically identical while that of hydrogen is very much greater. The major part of this research program was devoted to the construction and calibration of a vacuum tin-fusion apparatus which analyzes the evolved gases for hydrogen by means of a thermal conductivity cell. The second phase of the problem was associated with the development of a procedure for storage of samples prior to analysis. With the rapid quenching method for hydrogen sampling,' which seems to be the most practical for steel mill use, it is necessary that the samples be stored safely during the interval between sampling and analysis if the hydrogen content of the molten metal is to be maintained in the supersaturated solid samples. The thermal conductivity bridge has been used for a number of years in the analysis of certain gas mixtures. An elementary discussion of the theory and practice of gas analysis by thermal conductivity measurements is given by Minter.3 A more comprehensive discussion of the theory and of the various measuring circuits is presented by Daynes.' A complete knowledge of the theory and properties of the thermal conductivity of gases and gaseous mixtures can be gained by a study of the standard textbooks on the kinetic theory of gases."' The existing data on the thermal conductivity of single gases are reviewed by Hawkins: that for a number of binary gas mixtures by Daynes' and Lindsay." The thermal conductivity method may be applied to the determination of the composition of a binary mixture if: 1—the thermal conductivity of the mixture varies monotonically with composition, and 2— the two gases have measurably different thermal conductivities. The greater the difference between the two gases, the greater the sensitivity of the method.10 he method is applicable to the analysis of multicomponent mixtures when all of the gases in the mixture except one have nearly the same thermal conductivity. Fortunately, the mixture of hydrogen, nitrogen, and carbon monoxide evolved by the tin-fusion analysis' falls in this latter classification. The thermal conductivities of nitrogen and carbon monoxide are practically equal; and the thermal conductivity of hydrogen is approximately seven times that of the other two. Therefore, the thermal conductivity of a gaseous mixture of hydrogen, nitrogen, and carbon monoxide at known temperature and pressure can be related directly to the percentage of hydrogen in the mixture by suitable calibration. Usually the thermal conductivity of a mixture of gases is measured at atmospheric pressure where the thermal conductivity is independent of pressure over a wide pressure range. At very low pressures (below 1 mm Hg), the thermal conductivity of gases varies with the pressure. This phenomenon has been utilized in the Pirani vacuum gage for the measurement of pressures in the range of 10" to 10-0 mm of mercury.= Very little has been published concerning the variation of thermal conductivity with pressure at intermediate pressures between 1 mm Hg and 1 atm. However, preliminary measurements indicated that the thermal conductivities did vary with pressure over the range of pressures (up to 10 mm Hg) at which gases are delivered from the vacuum pump. Therefore, the calibration of the thermal conductivity cell had to be planned to include the effects of both gas composition and pressure. Such a calibration chart is shown in Fig. 4. Most industrial applications of the thermal conductivity method of gas analysis have used a compensated Wheatstone bridge circuit containing two
Citation

APA: B. M. Shields J. Chipman N. J. Grant  (1954)  Iron and Steel Division - Thermal Conductivity Method for Analysis of Hydrogen in Steel (Discussion page 1551)

MLA: B. M. Shields J. Chipman N. J. Grant Iron and Steel Division - Thermal Conductivity Method for Analysis of Hydrogen in Steel (Discussion page 1551). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1954.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account