Metal Mining - Block Caving at Bunker Hill Mine

The American Institute of Mining, Metallurgical, and Petroleum Engineers
C. E. Schwab
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
477 KB
Publication Date:
Jan 1, 1954

Abstract

A lead-zinc orebody, in fairly strong quartzite and with a dip of 35" to 60°, is block-caved by use of scrams in a stair-step pattern up the ore footwall. Scram linings to handle coarse muck and permit the use of folding scrapers are developed by the use of end-grain wooden blocks to reduce maintenance and keep operating cost to a minimum. THE Bunker Hill mine, since its discovery in 1885, has steadily produced a high grade of lead-silver-zinc ore. By the end of 1952 over 21,000,000 tons of this high-grade ore had been produced by square-set mining, and reserves in the mine continue to be very satisfactory both as to quantity and grade. For many years prior to 1941, mine production and mill capacity had been 1200 tons of feed per day. Closely adjacent to the mill, and stored behind dikes, coarse jig tailings had been impounded during the time preceding the advent of fine grinding and selective flotation. When manpower became short in 1941 and sink-and-float preconcentration was proved successful, mill capacity was increased to 1800 tons per day to treat these jig tailings economically. By 1946, because the supply of jig tailings was limited, underground exploration was started to discover and prove ore reserves of low-grade material which could be mined by an appropriate bulk mining method. During the years of square-set mining many possible areas of low-grade mineralization had been observed. One chosen for the first exploration work was sufficiently remote from active mining areas so that subsidence, if an ore-body were proved, would cause no problem. Also, old adits and workings were still open and in good enough condition so that exploration in the mineralized zone could be started with a minimum of preparatory work. In 1948 an orebody was proved of sufficient tonnage, of a grade about 2 pct Zn, 0.5 oz Ag, and 1.0 pct Pb. It was decided to use block-caving, the only appropriate mining method by which this grade of ore could be economically recovered. Exploration for additional reserves in other areas of the mine is continuing, but ultimate results are not known at this time. With more sink-and-float capacity, larger ball mills, and more flotation machines, mill capacity was increased to 3000 tons per day, permitting the mining of ore in the square-set area at a maximum rate not usually achieved, because of the scarcity of labor. Increased mill capacity also permits block caving and the mining of jig tailings at variable rates to keep mill feed up to 3000 tons per day. Fortunately the three types of feed are amenable to the same mill circuit and reagents for recovery of Pb and Zn. For example, during the first 10 months of 1952 square sets produced 827 tons per day, block-caving 1421 tons per day, and jig tailings 643 tons per day, an average daily production of 2891 tons for all three products. Exploration had proved the existence of an ore-body 1000 ft long and 165 ft wide in horizontal section, see Fig. 1. Company engineers were concerned only with the vertical extension, about 300 ft, from an old level to the surface. Much of this almost outcropped, Fig. 2. The ore lies in the hanging wall of a major fault of the Bunker Hill mine, standing at 65" in one end of the zone and separated from the fault by a wedge of waste, see Fig. 3. This wedge pinches out near the center of the zone, at which point the ore dips 45", lying nearly on the fault, Fig. 4. The remaining portion lies on the fault and conforms to the fault dip of 35", Fig. 5. Open-pit mining for the top of the ore was considered, but since the ore zone dipped into and under the mountains, adverse waste-to-ore ratios precluded use of this method. The ore occurs in massive quartzite of sufficient strength to support untimbered drifts, crosscuts, and raises. Zones of weakness in the quartzite are bedding, jointing, and small faults or slips. The mineralization, which occurs as small stringers of sphalerite and galena as well as pyrite, creates another line of weakness. The mineral veins or veinlets in themselves are high-grade. Their size and regularity and the amount of barren quartzite by which they are separated determined the limits of mineable ore, which are all assay limits except for the one determined by the major fault. Block 1 Without any background of caving in this type of quartzite, engineers selected the first block on the very steep end of the zone. Compelling reasons prompted this decision. The steep portion of the ore in Block 1 was of the lowest grade, so that if difficulties were encountered no very valuable ore would be lost, while the experience gained might be applied in mining the remaining blocks. A block 200x200 ft was laid out, with four scrams spaced 50 ft apart for drawing and placed at a right angle to the strike. Finger raises were placed in a 25-ft interval grid pattern, with flat undercutting done by crosscuts at the undercut level 25 ft above
Citation

APA: C. E. Schwab  (1954)  Metal Mining - Block Caving at Bunker Hill Mine

MLA: C. E. Schwab Metal Mining - Block Caving at Bunker Hill Mine. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1954.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account