Metal Mining - Testing of Roof-Bolting Systems Installed in Concrete Beams

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Rudolph G. Wuerker
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
9
File Size:
872 KB
Publication Date:
Jan 1, 1954

Abstract

MUCH descriptive matter has appeared on the subject of suspension roof supports, or roof bolting, as it is more commonly called. The widespread introduction of roof bolting into coal mines and metal mines is truly phenomenal. Mine operators were quick to recognize the advantages of supporting wide openings without hindrance to machine maneuverability and ventilation. Although suspension roof support has long been installed at St. Joseph Lead Co. mines in southeast Missouri,'" its application to coal mining presented new problems, such as proper anchorage and bearing for the bolts, bolt diameter, and spacing of bolts. After continuous testing and experimenting at the mines, standard roof-bolting materials were determined.'!' The study reported in this paper is not concerned with such details as bolt diameter, which may be considered already solved in practice. In the tests discussed here, small models patterned on actual bolts were found to function in the same way and as satisfactorily as their prototypes. The aim of these tests was rather to investigate the influence of roof-bolting systems on the stress distribution around mine openings and to study the fracture patterns obtained in actual testing. Little was found about this in the literature, as testing of suspension roof methods and quantitative measurements are only now coming to the fore. Several suggestions and actual measurements have been made to evaluate critically the functioning of roof bolting systems, single roof bolts, and parts thereof. Outstanding among them is Bucky's outline of structural model tests.'" Since none of the suggested testing equipment was available, however, for the experiments discussed below, a different approach was chosen. The response of a mine roof under stress has often been compared to that of a beam. The slow coming down and bending through of beam or plate-like banks of shale, sandstone, or top coal is a familiar occurrence, extensively cited in the literature." It was felt that testing of roof-bolt systems installed in a concrete beam which was loaded in bending would be a fair approximation of the behavior of a mine roof underground. Another school of thought considers the roof behavior over an underground opening in connection with the stress distribution all around a circular or rectangular opening. This is more accurate, and leads to the concept of a dome-shaped zone of material destroyed under tensile stress. This is likewise a common sight in unsupported roadways where the continuous fall of roof results in what has been called the natural outline of roof fracture. This theory could not be tested and is treated separately in Appendix B. It is important to note that according to both assumptions the immediate roof fails in tension; the use of a beam in these tests, therefore, should give information valid for either of the two theories. With the testing equipment at hand it was possible to load concrete beams 6xlx0.5 ft under two-point loading, giving an equal bending moment over the center part in which the model bolts were installed. A comparison was made of the ultimate loads needed to break plain beams and beams in which roof bolts were installed. Arrangements were made with: 1—plain beams; 2—bolts with plate washers, some with holes drilled at 90" angles and others with holes drilled at 45" angles; 3—bolts with channel irons underneath; 4—bolts in holes filled afterward with cement; and 5—bolts anchored in a stronger stratum. The foregoing arrangement is made in order of increasing strength, as assumed from the theory of reinforced concrete. Likewise, laminated beams with wooden model bolts and with combinations of the foregoing set-ups were tested. All in all, 21 experiments were made out of the much greater number of combinations possible. There were, too, some trial tests. Enough observations from this limited number were made to interpret the behavior of mine roof, supported by various types of suspension bolts, at fracture. In present-day concepts, which have been proved by mathematical derivations and stress analyses, any opening driven underground will change the distribution and magnitude of the stresses existing around it. It does not matter whether the stresses become visible, as in rocks whose strength is less than the forces acting upon them, or whether they are invisible, as in the gangways lacking evidence of rock pressure. In this latter case the rocks can withstand changes in stress-distribution. To consider the mine roof as a beam, there are, with transversal loading, tensile stresses in the lower fiber and compressive stresses in the upper layers above the neutral axis of the beam. Beams of brittle material such as rock and concrete fail exactly as shown in Fig. 1. Nearly all model beams showed the same fracture pattern as that of a tension crack. The influence of support, by roof bolting or conventional
Citation

APA: Rudolph G. Wuerker  (1954)  Metal Mining - Testing of Roof-Bolting Systems Installed in Concrete Beams

MLA: Rudolph G. Wuerker Metal Mining - Testing of Roof-Bolting Systems Installed in Concrete Beams. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1954.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account